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Abstract

The main topic of this paper is the use of piece-linear aggregate mathematical method
for formal specification, simulation and validation of distributed systems. The main
advantage of this approach is that it integrates two tasks of different nature, i.e.
simulation and correctness analysis of specification, on the base of a single
specification. Method of verification of aggregate specifications using forward-
backward simulation approaches is delivered also. The presented methods are
explained using illustrative examples.

1. Introduction

Distributed systems arise in many applications, including telecommunications, distributed
information processing, scientific computation and real-time process control.

Two properties are essential for distributed systems:

. computation activity is represented as the concurrent execution of sequential
processes,
. processes communicate by passing messages.

The models of computation generally considered to be distributed are process models, in
which computational activity is represented as the concurrent execution of sequential
processes [LL90]. The process models that are most obviously distributed are ones in which
process communicate by message passing: one process sends a message by adding it to a
message queue, and another process receives the message, by removing it from queue.
These models vary in such details as the length of the message queues and how long a delay
may occur between when as message is sent and which it can be received.

A wide variety of message-passing models can be used to represent distributed systems.
They can be classified by the assumptions made about four separate concerns: network
topology, synchrony, failure and message buffering.
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Two kinds of analysis are used for analysis of distributed systems: behaviour and
performance analysis. All possible trajectories are analysed during behaviour analysis and it
permits to check a correctness of specification. Various validation and verification methods
are used for correctness analysis. During performance analysis computer executes
developed specification of distributed system. Performance analysis is carried out by
simulation means. The main characteristics which are analysed during behaviour and
performance analyses are named in Table 1.

Table 1. Analysis methods and analysed characteristics

Kind of analysis
Behaviour Performance
Used methods
Validation and verification Simulation
Analysed characteristics
Static and dynamic deadlocks Lengths of queues
Termination Transmission time of messages
Invariant properties Waiting time
Safety Units utilisation coefficients
Liveness
Equivalence

Various formal methods are used for specification and analysis of distributed systems. This
publication is about aggregate approach [Pran91], which permits integrate behaviour and
performance analysis on the base of single specification. Such possibility permits to prove
that developed specification is correct and to evaluate performance characteristics of an
analysed system. For example, analysing computer network protocol it is not enough to
prove correctness of its specification but also it is needed correctly to choose parameters of
protocols such as timer values, buffer sizes, channel capacities, etc.

The most general definition of a distributed system is a triple {S, 4, }, where S — the set of
states, A — the set of actions and X — the set of behaviours.

Each behaviour is a finite or infinite sequence of the form So =ty —2g, @y
where each s; is a state and each g is an action. A state describes the complete instantaneous
state of the system, an action is a system operation that is taken to be indivisible, and a
behaviour represents an execution of the system whose g; action takes the system from state
si-1 to state 5;. The set Z represents the set of all possible system executions.

There are two general approaches describing the set : constructive and axiomatic. In the
constructive approach £ describes by program which one may be written in a conventional
programming language or in terms of a formal model such as /O automata [Lynch], various
modification of Petry nets, calculus of communicating systems [Miln80], aggregate
approach [Pran91].
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Axiomatic description leads directly to a method of reasoning. If @is the set of axioms that
describe 2 and C is property expressed in the same form system as @, then the system
satisfies C if and only if the formula @+ C is valid.

2. Aggregate Approach .

2.1. The Use of Controlling Sequences for Formal Description of
Piece-Linear Aggregates

In the application of the aggregate approach for system specification, the system is
represented as a set of interacting piece — linear aggregates (PLA) [Pran82]. The PLA is
taken as an object defined by a set of states Z, input signals X, and output signals Y. The
aggregate functioning is considered in a set of time moments ¢ € 7. The state z € Z, the
input signals x X, and the output signals y € Y are considered to be time functions. Apart
from these sets, transition H and output G operators must be known as well.

The state z € Z of the piece-linear aggregate is the same as the state of a piece-linear
Markov process, i.e.:

(1) = (), z,0))

where v(¢) is a discrete state component taking values on a countable set of values; and
2, (t) is a continuos component comprising of z,, (), z,,(¢)...., 2, () co-ordinates.

When there are no-inputs, the state of the aggregate changes in the following manner:

o(e)=const, Fol)__
dt

s
where @, = (au,, auz,...,aw) is a constant vector.

The state of the aggregate can change in two cases only: when an input signal arrives at the
aggregate or when a continuous component acquires a definite value. The theoretical basis
of piece-linear aggregates is their representation as piece-linear Markoff processes. The
exact definition of piece-linear processes is given in [NB73].

Aggregate functioning is examined on a set of time moments 7 = {t,, #,, ..., ,,, ...} at which
one or several events take place, resulting in the aggregate state alternation. The set of
events E which may take place in the aggregate is divided into two non-intersecting subsets
E'=E'UE". The subset E'={e,e},..,e,} comprises classes of events (or simply
events) e/, i= LN resulting from the arrival of input signals from the set
X ={x,, x,,..., x, }. The class of events e/ = {e;, j=12,3, }, where e} is an event from
the class of events e taking place the j-th time since the moment fy. The events from the
subset E' are called external events. A set of aggregate input signals is unambiguously
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reflected in the subset £’ i.c., X — E'. The events from the subset E” = i/, e?, ..., e}} are

called internal events where e = {e;' ,Jj=1,2,3, }, i= ﬁ are the classes of the aggregate

internal events. Here, f determines the number of operations taking place in the aggregate.
The events in the set £” indicate the end of the operations taking place in the aggregate.

For every class of events e/ from the subset £”, control sequences are specified {fj(’)},
where cj‘f‘)— the duration of the operation, which is, followed by the event e; as well as

event counters {r(e”, t,)}, where r(er, t,), i= 1,/ is the number of events from the class
e/ taken place in the time interval [r,, t].

In order to determine start and end moments of operation, taking place in the aggregate the
so-called control sums {s(e’,1,)}, {w(e”, s, )}, i=17 are introduced, where sent,,) ~ the
time moment of the start of operation followed by an event from the class e/ . This time
moment is indeterminate if the operation was not started; w(e/, ,) is the time moment of
the end of the opération followed by the event from the class e/. In case of no priority
operations, the control sum w(e”, 1,)) is determined in the following way:

s'(e”, )+ $iers, 1> if at the moment 1,, an operation is taking place,

w(e, 1,)= - which is followed by the event e;
) in the opposite case.

]

The infinity symbol (c0) is used to denote the undefined values of the variables.

The control sum definition presented above is used in simulation. When aggregate models
are used for system formalisation and correctness analysis, the control sum may be
determined in a simplified way:

( . ) < oo, if at the moment 1,, an operation is taking place, followed by the event e”;
wee;, 1, )= . .
o, in the opposite case.

Control sums determine only the possibility conditions for the events after the moment ¢,
while the event occurrence moments are not determined.

2.2. The Special Cases of Aggregate Model

In this section it will be shown that it is possible to get various cases of other well-known
models from the aggregate model.

Automata without memory:

V(tm)=®’ zv(tm)=®’ E,¢®7 E”:g’ z(’nn]):H(ell)’ y:G(e;), e:EEI'
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Automata with memory:

ve,)=2,2,0,)=2, E'#2, E"=2, 2(t,,)= H(z,(, ). €).
y= G(zv(t,,,), e,f), e;eE'.

System of differential equations: .

0 _ Ao o)), i-

dr

vit,)=9, 2,(t,)=D, E'=0, E"=
te(O,oo).

The general model of aggregate:

)2 D, 2,()% D, E' =B, E'+ 2, t() o265 0l relr.),

(t) const, whente[tm, m,) z(rm,) H(z (t ) ,) y= G(z( ),e,),
e, e E'"VE".

The piece-linear aggregate:

dz (t)

v(tm);t@,z( V2@, E'2D, E"#D, l,te[lm,tm,),v(t)=const,

When te[tm’tmﬂ)’ z(tm+l)=H(zv(’m)’ el)’ yZG(zv([m)’e/)’ el € E,UE”'

3. The Use of Simulation Technique for Correctness Analysis
of Aggregate Specifications

The most widespread method used for correctness analysis of automata models is
simulation technique [NL93, NL95]. In section 2.1 it was showed that aggregate
specifications belong to the class of /O automata. It enables us to use a simulation
technique for correctness analysis of aggregate specifications. In this section simulation
technique will be used for correctness analysis of alternating-bit protocol. We will use proof
strategy based on a hierarchy of automata. This hierarchy represented by description series
of a system at different abstraction levels. The process of moving through the abstractions,
from the highest level to the lowest, is known as successive refinement. The top level may
be a problem specification written in the form of an automaton. Lower levels in the
hierarchy look more and more like an actual system that will be used in practice.

n formal specifications of the same system with different abstraction levels are presented in
Figure 1, where fj, i =1,n—1, j =2, n are relations between i-th and j-th specifications.

? ?
relation relation
fiZ f;r- Ln

Figure 1. The sequence of specifications with different abstraction levels
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Let 4 and B be two I/O automata with the same external interfaces. Also 4 is an automaton
with the higher abstraction level and B is an automaton with the lower abstraction level.
Suppose fis a binary relation over states(4) and states(B), that is, Jfc states(A) x states(B).
The fis a simulation relation from 4 to B, provided that both of the following are true:

1. If s e start(A), then f(s)Nstart(B)#0.

2. If's is reachable state of 4, u € f(s) is a reachable state of B and (s, m, §") € trans(A),
then there is an execution fragment o of B starting with » and ending with some
u € f{s"), such that trace(a) = trace(r).

The first condition asserts that any start state of 4 has some corresponding start state in B.
The second condition asserts, that any step of 4, and any state of the step, have a
corresponding sequence of steps in B. This corresponding sequence can consist of one step,
many steps, or even no steps, as long as the correspondence between the states is preserved
and the external behaves is the same.

Next, a use of simulation technique for verification on ABP is discussed. We will consider
two specifications: the first describes protocol service — higher abstraction level and the
second — an algorithm of ABP (see section 3.4) — lower abstraction level.

An aggregate system describing the service of the protocol is depicted in Figure 2, where
INFS — the packet, which has to be transmitted, INFR — the packet, which has been received
by receiver and ACK - an acknowledgement. State graph of service of ABP is presented in
Figure 3.

Figure 2. Aggregate system describing the service of ABP

Figure 3. The state graph bf service ABP
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Figure 4 depicts aggregate system of ABP with lower abstraction level.

Figure 4. Aggregate system of ABP (lower abstraction level)

Carried out verification of ABP showed that correctness of protocol depends on a timer
value. If the timer value is less then a sum of transmission times of packet and
acknowledgement, then the protocol does not fulfil a required service. Such situation is
illustrated in Figure 5.

Figure 5. Timing diagram of ABP when timer value is less than a sum of
transmission times of packet and acknowledgement

It is possible to formulate two problems, which arise implementing simulation technique for
analysis correctness of protocols:

. definition of relation f between states in low and high abstraction levels of
specification;
. searching for trajectory(ies) in specification with lower abstraction level for each step

in specification with higher abstraction level.
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4.  Specification and Validation of Timed Protocol with Slot
Reuse

4.1. Informal Description of the Protocol

~

A system comprises of a set of stations and the server, which communicates using slots sent
via a unidirectional bus [HP 97]. Stations can receive messages from an environment and
forward them to the server, which remove this message from the system. The server can
receive messages from the environment and send them to a named destination station; we
assume that the environment provides this destination name. When a station receives a
message from the server and the message is destined for that station it removes the message
from the system, otherwise it return the message to the bus.

Each station and the server identified by a unique Station Number, and comprise of a buffer
(B) to hold slots from the bus and a queue (Q) to hold what it receives from the
environment,

The bus comprises of the slots, which hold messages or can be empty; each slot is a tuple
(Slot Number, OriginatingStation, DestinationStation, Message). Each slot is identified by a
unique identifier SlotNumber and Slots circulate in the bus by visiting each station in turn.

4.2. Aggregate Specification of the Protocol

Aggregate system, which describes the protocol is presented in Figure 6. Channels, which
are used in aggregate system, are duplex, it means that signals may be transmitted from both
ends of the channel. Aggregate system consists of the following aggregates: Bus,
Slot_1, ... Slot_M, Server, Workstation_1, ..., Workstation_(N-1). Formal descriptions of
these aggregates are presented below.

BUS ol Server

S[DL 1 <4—>pe
< »| Workstation_|

St M | pe

A

Workstation_N-1

Figure 6. Aggregate scheme of protocol
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Formal description of aggregate Server

1.

o

The set of input signals. X ={x,}, x, = (sl,s,r,st) , where s/ — number of the slot which
is transmitted, s — number of sending station, r — number of receiving station,
0, if slotis empty,
st =4 1,if slot transmits packet to server,
2,if slot transmits packet from server.

The set of output signals. Y ={y,;}, » = (sl,s,r,st).

The set of external events. E' = {e]}, where e, denotes an arrival of the signal xi.

The set of internal events. E" = {e], e}, where e/ means that service of slot is ended;
e) - message in workstation is formed.

. Controlling sequences. e] = {y;}, i = 1,2, where 4 —duration of slot service in server;

12 — duration of message formation.

. Discrete component of state. vit, )= Vi) v, (¢,)}, where wi(t,y) — number of the slot

which is served in server; vi(tm) =0, when there are no slots in server; V(tm) — the
number of messages in queue.

. Continuous component of state. z, )= {wler, t,), wies,t, )}, where wlelt,),i=1,2-

the time instant in which event e/ has to occur.

. Initial state. w(el,t,) =, wle}, 1,)=to + thy, v(t,)=0, v,(t,)=0.

Transition and output operators:

Hle}): V,(t,,m)= sl, w(e,, tm,): t, + 1.

Gle]):Y=2..

H(el): valtmer) = Vatm) = 1 if va(tm) > 0;
S(tmr) = Lrtm) =11 @ st(tw) =2 if w(tm) >0,
$(tmr1) =0, P(tm1) =0, $Htmr1) =0 if w(tm)=0,
Vi(tmr1) = 0, wle!, tn)=o,

ﬁherle} ¢ — random value, which define the number of receiver and @€ {1,...,

Gle): y, = (), s(t,), r(t,).51(1,.)) -

H(ed): vy(t,.) = v, +1.

Gle]): Y =@.
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Formal description of aggregate Workstation_j,j=1,2, ..., N-1.
1 The set of input signals. X =%} x =(sl,s,r,st),
2 The set of output signals. ¥ =1}>x = (sl,s,r,s0).

The set of external events. £ = e} , where ¢l means an arrival of the signal x1.

W)

n_{n n ” . ’ . .
4 The set of internal events. £ = el 5} , where ©I' means that service of slot is ended in
workstation; 2 means that new message has arrived to workstation.

5 Controlling sequences. & ~> {”'}, i=l 2, where ul - duration of slot service; p2 -
duration of message formation.

6 Discrete component of state. V(t"' ) = {V' (t'" ) V2 (t"' )} , where v1(tm) — number of the slot
which is served in s-th workstation; v1(tm) = 0, when there are no slots in workstation;
v2(tm) — the number of messages in queue.

7 Continuous component of state. ¥ (6,) = {wlef, 1, ) wies. v, )}
8 Initial state, "(€1>10) =@, W(el,l) =15 + 11, v,(1,) = 0, v, (1) =0.
9 Transition and output operators:
H(e;): Villya) =sl, wiel,t,. ) =1, + .
Gle): Y=0.
H(el'): Vollm+1) = wtm) -1, S(Umr1) =), () =1,
S(tme1) =1 1f st(t) =0 A Ww(t) > 0,
SUwe1) =0, r(tmr1) == 0, $t(tws1) =0 if st(ty) =1 A r(tw) =],
Vi(tm+1) =0, W(e;” ’m+|) = .
Gel): y, = (v,(t,),5(8,, ). 71, ). 51(¢,,)).
H(e;): vilt,.) =, v(t,)+1.
Gl}):v:=0.

4.3. Results of Validation of Protocol

Specification presented in the previous section was validated using validation subsystem of
protocol analysis system PRANAS-2 [HP94]. Some results of validation are presented in
Table 2, when number of workstation is 2 and 1 slot is in the bus. Operation “Slot
transmission” describes a process of slot transmission through a bus. Operation “Slot in
station” describes process of slot processing in either server or workstation. Beside the
arrows names of operations are written, which initialise transition to other state. State 383
describes situation, when each station has message for transmission and the slot is
transmitted to server. When operation “Slot transmission” ends the state is changed.

Table 2 illustrates validation experiment that after some transitions all messages, which are
in stations (state 383), are transmitted to other stations.
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Table 2. Results of validation

State Aggregate Discrete state component Active operations
Number
Vi I Vs l 14} | Ya
383 Server 0 1 Message
Workstation_1 0 1 Message
Workstation_2 0 i ¥ Message
Slot_1 1 0 0 0 Slot transmission
{ Slot transmission (aggregate Slot_1)
44 Server 1 1 Message Slot in station
Workstation_1 0 1 Message
Workstation_2 0 1 Message
Slot_1 1 0 0 0
¢ Slot in station (aggregate Server)
77 Server 0 0 Message Slot in station
Workstation_1 0 1 Message
Workstation_2 0 1 Message
Slot_1 2 1 3 2 Slot transmission
J Slot transmission (aggregate Slot_1)
127 Server 0 0 Message
Workstation_|1 1 1 Message Slot in station
Workstation_2 0 1 Message
Slot_1 2 1 3 2 Slot transmission
J Slot in station (aggregate Workstation_1)
191 Server 0 0 Message
Workstation_| 0 1 Message
Workstation_2 0 1 Message
Slot_1 3 1 3 2 Slot transmission
J Slot transmission (aigregate Slot 1)
260 Server 0 0 Message
Workstation_| 0 1 Message
Workstation 2 | 1 Message Slot in station
Slot_1 3 1 3 2
y Slot in station (aggregate Workstation 2)
314 Server 0 0 Message
Workstation_1 0 1 Message
Workstation_2 0 1 Message
Slot_1 1 0 0 0 Slot transmission
{ Slot transmission (aggregate Slot_1)
29 Server 1 0 Message Slot in station
Workstation_1 0 1 Message
Workstation_2 0 1 Message
Slot_1 | 0 0 0
4 Slot in station (aggregate Server)
54 Server 1 0 Message
Workstation_1 0 1 Message
Workstation_2 0 1 Message
Slot 1 2 0 0 0
{ Slot transmission (aggregate Slot_1)
92 Server 1 0 Message
Workstation_1 0 1 Message Slot in station
Workstation_2 0 1 Message
Slot_1 2 0 0 0
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