
Object-oriented aspects of information
systems: Ada'95 and Java as advanced

tools for implementation

Dr. habil. sc. ing. Janis Osis
Bikernieku iela77 - 34, Riga, LV-1039, Latvia,osis@egle.cs.rtu.lv

. Mag. sc. ing. Pavel Rusakov
Jurmalas gatve 9312 - 54, Riga, LV-1029, Latvia, rusakovs@egle.cs.rtu.lv

Abstract: this article is fully devoted to the describing of some importmt aspects in the

inrplenrentation of complex informational systems. Two modem advanced object-oriented

programming languages - Ada'95 and Java were chosen as possible tools for this goal. Basic

mechanisms for applied programnring: abstraction, encapsulation and hierarchy are anatysed

in this article. Programs code examples were actively used to demonstrate these

opportunities. 'fhe resulting table of languages object-oriented mechanisms is given at the

end ofthe work.

Keywords: object-oriented, Ada'95, Java, abstraction, encapsulation, hierarchy,

inheritance.

Introductioll: Modern informational systems are mainly very complex

systems. object-oriented model is the nrost eflective model to implement such systems.

object-oriented programming languages are excellent tools for programming using

object-oriented approach to problem. object-oriented opportunity first appeared in the

programming language Simula-67 []. objects were used to simulate some aspects of
reality. The main goal ol the system designer in this case - to decompose the problem

into the collection ofcollaborating objects using the hierarchy principles. So, in program

objects wll/ be simulating real parts of systems, messages, and a lot of other aspects of
work.

There are four major aspects of the odecroriented model: abstraction,

encapsulation, hierarchy and polymorphism [2]. we also have some facultative elements

189

ofthis model: modularity, typing, concurrency and persistency.

Why were Ada'95 and Java chosen for the analysis? Ada'95 is the first object-

oriented programming language with the ofiicially accepted intemational standard [3].

The first standard, Ada'83, was only object-based (without inheritance) and was

developed for safety-critical military systems and real-tirire embedded systems. The

object-oriented language Java was developed as the safe platform independent

programming language with included network mechanisms, on the base of C++,

SmallTalk and Objective C, with some good ideas from other programming languages.

1. Abstraction and encapsulation

Abstraction focuses upon the outside view of an object, but encapsulation

(information hiding) prevents clients from seeing its inside view. A c/ass is a set of

objects that share a common structure and a common behaviour [4]. An object is the

instance ofthe class.

1.1. Ada'95.

The main mechanism for abstraction and encapsulation in Ada'95 isthe package.

The package allows to group information about the logically related data and methods

for working with these data. Theoretically, we can speak about the package as the class.

Practically, we have no opportunity to implement an instance of this class (or create an

element, static or dynamic). The Ada'95 package is only named space.This problem is

mainly related to the main purpose of the Ada - creating the safety-critical systems.

Pointers to the packages may cause inconsistency in the language standard. This

mechanism is very expensive, too.

The package has two parts: an interface and an implementation (package and

package body). The part package defines opportunities of the package, but the

package body implements these opportunities. There are two reserved words for the

package interface: private and Iimited private. These words restrict the visibility of

some elements of the package. The mechanism private allows creating an element of
the given type, passing it as a parametei, checking on equality (not equality) and

assigning element value of such t1pe. The mechanism limited private allows only to

190

create an element and to pass it as a parameter. The package specification has two paxts:

visible without this package and not visible without this package (private). Both

private and limited private elements must be defined in the second part.

So, to make the hide of the information more effective, each class must have two

parts: an interface and an implementation. The interface of a class captures only its

outside view, but the implementation of a class comprises the representation of the

abstraction as well as the mechanisms that achieve the desired behaviour. separate using

of package specification (file with extension ADS) and package body (file with

extension ADB) is the big advantage of Ada both standards in comparing to Java. At
first, we have the largest flexibility in the errcapsulation. For instance, a package

specification and a package body can use different packages. Second, the interface - the

most important information for user - placed very compactly and it is not necessary to

see both names of methods and implementation in this case.

We want to demonstrate this logic on a simple example. For instance, we have on

a discrete flat, a point with integer coordinates X and y. We have some defined

operations with this point: get X and Y coordinates, sef X and y coordinates, and, print
information about this point. Let us to demonstrate the interface part of this example on

Ada'95.

package CP_Pack is

- this type will be described in the part private

type CoordPoint is tagged private;

- The method InitPoint is a constructor equivalent

procedure InitPoint (ParmCoordPoint : in out Coordpoint;

ParmX : in Integer; parmy : in Integer);

- The method GetX is used to get X coordinate

function GetX (ParmCoordPoint : in Coordpoint) return lnteger;

- The method GetY is used to get y coordinate

function GetY (ParmCoordPoint : in Coordpoint) return Integer;

- The method SetX is used to change X coordinate

procedure SetX (ParmCoordPoint : in out Coordpoint; parmX : in Integer);

-- The method SetY is used to change Y coordinate

procedure SetY (ParmCoordPoint : in'out Coordpoint; parmy : in Integer);

191

- The method PrintPoint is used to print coordinate point

procedure PrintPoint(ParmCoordPoint : in Coordpoint);

private

-- coordinate point with coordinates X and Y (**)

type CoordPoint is tagged record

X : Integer;

Y : Integer;

end record;

end CP_Pack;

-- X coordinate

-- Y coordinate

As it is seen, all information is organised very logically and compactly. The public

methods are defined in the beginning of package. The private tagged type coordpoint

declared only in the beginning of package, but defined only in the special part private

(the reserved word tagged means that we can have an opportunity to inherit this type for

more complex constructions in future).

we also want to demonstrate a fragment of the implementation part - package

body. The implementation of the initialisation method will demonstrated here.

with Text_lO;

use Text_IO;

package body CP Pack is

-- the new package IO,Inteqier will be organised to output integer numeric

-- generic package Int eger _l O is the base of new package

package lO_Integer is new Integer_lO(lnteger);

use lO_Integer;

procedure InitPoint (ParmCoordpoint : in out Coordpoint;

ParmX : in Integer; ParmY : in lnteger) is

begin

ParmCoordPoint.X := ParmX; -- X coordinate initialisation

ParmCoordPoint.Y :: Parmy; -- y coordinate initialisation

end InitPoint;

-- other methods

end CP Pack:

t92

1.2. Java

Java uses the speciar reserved word crass for the crass organisation (as in the
c++). we can freely create dynamicar instances of this class and to work with them in
the form <object>.<attribute> (or <object>.<method>). ow example with the
coordinate point may be implemented on Java as follows:

class CoordPoint {

/* these attributes will be inherited, but its implementation

is hidden from the user */

.
private protected int X; // X coordirnte

privaie protected int y; // y coordinate

/* these methods are public and visible from all parts ofthe program */

CoordPoint (int parmX, int parmy) { ttconstructor

X: parmX;

Y: parmy;

I.t,

public void finalizee { ttdestructor

)

public int getXQ { // X gefiing

return X;
II

public int getY0 {
return Y;

)

// Y getting

public void setX (int parmX) { // X changing
X = ParmX;

)

public void sety (int parmy) { // y changing

Y = ParmY;

)

public void printPoint0 {// The printing ofcoordinate point
System.out.println(..X is :.. +X+.. yis :..+ y);

193

t.

As it is seen, the interface and the implementation are not logically separated.

From the authors point of view, it may cause problems wifh clearity and visibility if
methods are not so short as in this example and if we have not very much comments in

the program. May be that old construction in C++ was more reliable. We had the

opportunity to define methods in class as below:

class CoordPoint {

. protected:

int X; // X coordinate

int Y; // Y coordinate

public:

CoordPoint (int ParmX, int ParmY); // constructor

- CoordPoint 0; // destrucror

int getX0; // X getting

int getY0; // y getting;

void setX (int ParmX); // X changing

void setY (int ParmY); // Y changing

void printPoint0; // The printing ofcoordinate point

t.

That part was the interface part. But now comes the fragment of the

implementation part:

CoordPoint :: getX$

{

return (X);

)

Authors think, that this concept was more effective. Ofcourse, one ofthe reasons

to unite interface and implementation was the problem with the so called header-files.

These files were containers for classes and it'was possible easily to change a protection

194

ofattribute or method (for instance, to replace private on public). But we can unitboth
interface and implementation in one file and not to lose the common conception of this

principal separating of functionality. From the authors point of view, the next

construction may be more rationally for Java standard:

1. To avoid interface and implementation in the differenl files (as in the c++),
this operation were be successfully implemented.

2. To organise interface and implementation in one file, as in C++.

Telling about our personal experience, we can mention modem object-oriented

programming languages mainly use interface and implementation separately. For

instance, this concept takes place in the object pascal, c++, Borland Delphi, Borland

c++ Builder, Ada'95. The Java concept is presented in DBMS Visual Foxpro 5.0 (not

"free" programming language).

But we must declarate that Java has more flexible opportunities to restrict

information's visibility. Ada'95 has only three opportunities for this goal. Two ofthem
were mentioned above, but the third one - by default - is public equivalent in c++ and

Java. Java hasfve opportunities for visibility restriction..

2. Inheritance

Inheritance defines a rerationship among the classes, wherein one class shares the

structure or behavior defined in one or more classes (sizgle inheritance and multiple
inheritance, respectively) [4]. only a single inheritance will be compared in this article,
because both Ada'95 and Java languages don't include standard opportunities to

organize multiple inheritance. Multiple inheritance may be achieved in both cases using
the special receptions. For instance, interfoces mechanism exists in Java for this goal

(rhe proktcol concept was inherited from objective-c). Interfaces have its own
hierarchy, and not intersect the class hierarchy of inheritance. This feature gives an

opportunity to use one interface in different classes, not related with class inheritance.

Interfaces related with class methods not with class attributes. Interfaces replace c++
multiple inheritance in the large degree. Ada'95 has some informal opportunities for
multiple inheritance but all these opportunities related only with applied programming,

not with language standard.

2.1. Ada'95

There are three main mechanisms of inheritance in Ada'95:

L Tagged types.

2. Child packages.

3. Generic packages.

The mechanisms (l) and (2) are new for Ada'95 standard. The mechanism (3) is
inherited from Ada'83 standard.

. 2.1.1. Inheritance between types

Now we want to describe the mechanism (l). For instance, we want to define a

new type DisplayPoint based on type coordpoinl (with the new field colour). Type
coordPoint was defined in the p ackage cp

-pac&
(I . I). This type was defined as tagged

using the reserved word tagged. For instance, the new type may be implemented as

follows:

type DisplayPoint is new Coordpoint with record

Colour: Integer;

end record;

But in our case we have no opportunity to organise such type in the main program

using our package cP-Pack. That's because the supertype coordpoint was defined in
the private part ofthis package.

It is very important to mention that we have the inheritance between the types not
between the classes in this case. This specific f'eature is a very strong part of the Ada'95
standard. so, in old versions of pascar and in Ada'g3 we had an opportunity to
implement "simulation of inheritance" using the case records wfi, discriminant
mechanisms. The serious problems take place in this case: we may have only one case

part in this case and we have this fictive inheritance only on one level into deep. Using
tagged mechanism we can organise complex types with not-restricted into deep

inheritance. That is real not simulated inheritance. It is not necessary to pass

discriminant value as the parameter for the case part. But feature ,.tagged,, may be used

more effectively with the child packages. It may be a very powerfull complex of

196

inheritance. Now we will discuss this approach.

2.1.2. Inheritance between classes

Ada'95 standard has a new inheritance mechanism in packages - chird packages

[5]. We have an opportunity to build a complex system of the smallest subsystems; each

ofthem is a package (and not compulsory a child package). In that case, changes in a
small subsystem will influence other subsystems very loose. There is a very big
information hiding in Ada'95 packages. c** has a special keyword friend, which
allows to indicate friendly classes, methods ofthose have access to the data ofthe given

class. The analogue of this keyword is missing in both Ada standards. visibility exists
only in the child packages parts: parts private of the child packages can see the

corresponding parts of its paxents.

Let us demonstrate this opportunity with the example. The package cp_pack was
defined in the part l.r. we want to organise the child package Cp_pactcDp_packto
encapsulate our new type: Displaypoint. we want also to inherit the base methods from
the package CP-Pack, such as Getx, Gety, setx, sety. Two methods: Initpoint and,

PrintPoint will be overwritten in this case. we will also have two new methods:
Getcolour and, setcolour- The interface part ofthis package will be organised as below:

package CP_Pack.Dp_pack is

-- the new type for display point interface

fype DisplayPoint is new Cp_pack.Coordpoint with private;

- the method to initialise the display point

procedure Initpoint (parmDisplaypoint : in out Displaypoint;

ParmX : in Integer; parmy : in Integer; parmColour : in Integer);

- the method to get Colour of the display point

function GetColour (parmDisplaypoint : in Displaypoint) return Integer;

- the method to set Colour of the display point

procedure SetColour (parmDisplaypoint : in out Displaypoint;

ParmColour : in Integer);

- the method to print display point

procedure Printpoint(parmDisplaypoint : in Displaypoint);
private

197

-- the description of the type of display point

fype DisplayPoint is new CP_Pack.CoordPoint with record

Colour : Integer;

end record;

end CP Pack.DP Pack;

As it is seen, the prefix of the package - superclass (CP_Pack) is used to access

the supertype CoordPoint. This inheritance between the child packages also have no

restrictions into deep. The more complex example with the child packages is described

in [6].

The generic packages mechanism will not be discussed in this article. The main

goal of this mechanism is to make types by transferability, perform the same logical

function on more than one type of data [7]. It is only the base for working packages. We

can not use these packages immediately (see example withCP_Pack package body in

1.1).

2.2. Java

Java has more powerful opportunities in the single inheritance in the comparing

with C++. Our example with the display point (2.1 .1.) may be implemented on the base

ofcoordinate point (1.2.) as follows:

final class DisplayPoint extends CoordPoint { // inheritance from the base class

private int Colour; // colour ofpoint

DisplayPoint (int ParmX, int ParmY, int ParmColour) {// constructor

super(ParmX, ParmY); // to call the constructor of the superclass

Colour = ParmColour; // the initialisation of the Colours

)

public void setColour (int ParmColour) { // method to set colour

Colour - ParmColour;

)

public int getColour$ {

return Colour;

t.

198

// method to get colour

public void printPoint0 { llThe printing of DisplayPoint

System.out.println("X is : " +X+ " Y is: " +Y+ " Colouris : " +Qsl6ur;.

t
t

)

We canforbid changingof the methods and attributes nL*" in Java. Modifier

final is included in the language for this goal. Modifier final before method or attribute

defines that all the next inherited subclasses will use only this definition ofmethod or

attribute. Modifier final before the class means that this class will not have subclasses

[8]. This mechanism is very actual to the commercial classes to avoid its extension by

users. We have no such a mechanism in C*+.

It is necessary to mark one important feature in the Java's inheritance: exceptions

are organised as classes and may be effectively inherited. Java is significantly better than

Ada'95 in this relation. we havc only reserved word exception in Ada'95 to describe

our own exception. Exceptions in Ada'95 are only pa(s of packages (classes). In Java

our exceptions will be inherited lrom the base class Exception. For instance:

class LowValueException extends Iixception {... }

3. Resulting table

Aspect Ada'95 Java

Abstraction

and encapsulation
9 l0

Dynamical objects

creation
+

Inheritance

Single l0 8

Multiple 6 I

Common Result: 25 26+

All described object-oriented mechanisms will be compared now. The maximal

quantitative mark of each aspect is 10, minimal'* 0. we have "+" in the table cell if the

199

quantitative aspect is represented, and '-' in the other case

conclusion: some common aspects of two advanced object-oriented languages

were analysed in this article. All aspects are described and demonstrated with examples

of the program code. Logical comments were made in this context. The main result of
the work is the table with estimates ofeach object-oriented aspect.

This work includes only common features of Ada'95 and Java (or features which

we can compaxe correctly). For instance, Java standard includes platform-independent

users interface Qava.awt), intemet tools (iava.applet), and some other important

mechanisms. The common estimate of Java will be significantly greater if to compare

thgse features with missing of it in Ada'95. Ada'95 standard must be extended in these

directions for more effective concurency in commercial programming from the authors

point of view.

References

l. K. Nygaard, O.-J. Dahl. The development of the Simula language (in History

of Programming Languages). R Wexelblat, ed. New york, Academic press,

1981, pp. 439-493.

2. Grady Booch. Coming of Age in an Object-Oriented World.

IEEE. Software, November, 1994, page 33 - 41.

3. David A. Wheeler. Ada lessons: What is Ada, 1995.

Intemet address: http://cortex.dote.hu/Ada_lessons/s I - l.html

4. Grady Booch. Object Oriented Design With Applications.

The Benjamin/Cummings Publishing Company, Inc. 1991.

5. David L.Moore. Object-Oriented Facilities in Ada 95.

Dr. Dobb'sjournal. October, 1995, num. 235,p.28-35.

6. J, Osis, P. Rusakovs. Comparing of Some Object-Oriented programming

Languages. MOSIS'97 Proceedings (Modelling and Simulation of Systems,

April 28 - 30, 1997, Hradec nad Moravici, Czech Republic , ppJ97 - 202'1.

7. Dirk €raeynest. Some information on the Ada programming language

(Reusability), 1997.

Intemet address: http://www.cs.kulerrven.ac.be/dirk/ada-belgium/ada.hml.

8. Patrick Naughton. The JAVA Handbook. Osbome McGraw-HilI, 1996.

All codes examples were compiled and executed using next compilers:

l. Ada'95 (GNAT 3.0s) (1996) .

2. Iaval.0.2 (1996) and 1.1.3 (1997).

201

