Towards a Module Concept for Object Oriented
Specification Languages

Silke Eckstein ¥

Technische Universitdt Braunschweig, Informatik, Abt. Datenbanken
Postfach 3329, D-38023 Braunschweig, Germany
e-mail: S.Eckstein@tu-bs.de

Abstract

The general aim of our work is the specification of distributed information
systems, that means reactive systems consisting of one or more databases and
application programs. In this context the formal object oriented specification
language TROLL was developed and is now going to be extended by module
concepts. In this paper we give a short introduction in TROLL and a survey
over related work done not only in the object oriented setting but also in the
fields of specification languages in general, theory of abstract data types and
parameterized programming. When presenting our own module concepts we
explicitly distinguish between providing the possibility to structure a large
system on one hand and supporting the reuse of (parts of) specifications on
the other hand.

1 Introduction

Investigations concerning module concepts, modular languages and modularization
of software systems have been done since in 1972 Parnas introduced the notion of
modules [19, 20]. Today it is widely accepted that a modular design of software
decreases its complexity, i. e. makes it easier to construct, validate, maintain, and
reuse software. In the past ten years a special kind of module has been developed:
the concept of object classes. Nowadays it turns out that additional concepts are
needed in the object oriented setting to support reuse of specifications as well as
implementations and structuring of large systems.

Some of the popular methods and languages for object oriented design, like for
example OMT ([22] and UML [2], already provide module concepts, which allow
to structure a system into manageable parts. Unfortunately, these modules (also
called packages, subsystems etc.) are presented rather informally, i.e. they have
neither explicit interfaces nor can they be parameterized and module composition
operations do also not exist. [25] and [23] argue that object classes are too fine-
grained to structure a system and to be effectively reused. Furthermore, [25] remarks
that there may be a need to express invariants associated with more than one class.
More emphasis on reuse is layed in [8], who distinguishes between black box, glass

180

box und white box reuse. Another approach is taken in publications about design
patterns [21, 9] which may also be regarded as special kinds of modules.

As the main interest of our work is the specification of distributed information
systems, that means reactive systems consisting of one or more databases and appli-
cation programs, the special requirements of both areas, databases and programming
languages, have to be considered and integrated. In this context the formal object
oriented specification language TROLL [12, 3] was developed and is now going to be
extended by a module concept.) -

The paper is organized as follows: In the next section we give a brief presentation
of TROLL. Related work is discussed in section 3 and in section 4 our own module
concepts are introduced. After all we give an outlook on our further work in the
5. section.

2 TroLL

Information systems are distributed reactive systems consisting of one or more data-
bases and application programs. The object oriented language TROLL [12, 3] was
developed for specifying information systems at a high level of abstraction. The
current version 3 is based on earlier investigations as described in [13, 15]. The
textual language TROLL was supplemented by the graphical variant OMTROLL [16]
which borrows concepts from OMT [22]. In the following we will give a brief survey
of the main concepts of the TRroOLL-language. A more detailed description can be
found in [12, 3].

A software system is considered to be a concurrent community of interacting
objects. Objects are units of structure and behaviour and are classified in classes.
Structuring mechanisms are aggregation, resulting in compound objects, and spe-
cialization with inheritance. Objects defined separately may be connected through
global interactions, which are specified in the behavior part of an object system. We
will illustrate this with an example.

Example 1 (airport information system): In the following, we use a small part
of an airport information system to illustrate some of the language constructs. In
figure 1 we define two object classes, Passenger and Airline_Company. Objects
of class Passenger have got two attributes: a name, which is constant troughout
the object live, and an address of data types string and adr, respectively. One
action, book _flight, is specified. It has an input parameter nr, which stands for
the number of the flight to be booked. For objects of class Airline Company we
specified an attribute to store the office address and an action book, that is used to
book a seat in a flight offered by this company.

Two objects, pass and comp, exist in the airport system. pass is an object of
class Passenger and comp is an object of class Airline_company. The interaction
between these objects is specified in the behavior part of the object system whenever
the passenger pass books a flight, the action book of airline company comp is called.

Though it is not specified in the example, one can imagine, that the object class
Airline company may have a number of flights as components. Then the action
book would reserve a place in the flight with the given number. a

The formal semantics of TROLL is defined in different ways. Linear-time temporal

181

abject Flass Pamnungen object class Airline_Company

att:al;‘l’:?s) attributes
5k ffice_addr: addr;
address: addr; ° - !
setions actions
book(nr: nat);
book_flight(nr: nat); ; ¢ ’
) behavior
behavior
a4 end;
end; *

object system Airport
objects pass: Passenger;
objects comp: Airline_Company;
behavior
pass.book_flight (nr)
do comp.book(nr) od;
end_subsystem;

Figure 1: Airport_System

logic is used for describing sequential object behaviour. For specifying interactions
between concurrent objects a distributed temporal logic is used, which is based on
n—agent logic. An interpretation through a denotational behaviour model is given
by labelled event structures. The theoretical foundations are outlined in [4, 5, 6].

3 Related Work

Module concepts and similar approaches have been investigated in various fields such
as programming and specification languages, entity-relationship approach, theory of
abstract data types and parameterized programming.

In the area of algebraic theory of abstract data types Ehrig and Mahr [7] devel-
oped a module concept, where a module specification consists of four components,
which are given by algebraic specifications and combined through specification mor-
phisms. In the import interface, resources are specified which are to be provided
by other modules while the export interface contains the resources provided by
this module. As a common part of import and export the parameter describes the
generic resources to be instantiated in a concrete environment. The construction
of the exported resources from the imported is done in the body. Various forms
of interconnections are provided, for example composition, actualisation, union, re-
alization and refinement. They are done by specification morphisms. A similar
approach can be found in [18]. Though this is an elaborate theory which provides
some useful concepts, not all aspects of our approach are covered. For instance, we
have to deal with concurrent objects communicating with each other through action
calling.

In [11] a set theoretic approach to module composition is given, using the no-
tions of tuple sets, partial signature and institution. Two kinds of specification
modules are distinguished, theories for describing properties of other modules and
packages for specifying what has to be implemented. The operations on modules

182

are renaming, hiding, enriching, composition of horizontal and vertical modules, pa-
rameterization and instantiation. Views are used to bind specification modules to
theories. Similar to the algebraic approach described above, this one also provides
some useful concepts which will help us, but it doesn’t cover all aspects we are
concerned in.

There already exist some object oriented specification languages which provide
module concepts. FOOPS [24, 10] supports horizontal and vertical composition,
abstract classes, parameterized modules, instantiation, import etc., but distribution,
concurrency and communication are not considered. Similar concepts are offered by
OozE (1] which is syntactically based on Z.

A quite different approach was taken in the area of protocol specification for
distributed systems. In this context the specification language Estelle [14] was de-
veloped, which is based on extended finite state automata. In Estelle, modules repre-
sent the (concurrent) components of a system. They may contain submodules that
may be connected sequentially or concurrently. Modules communicate with each
other through channels using an asynchronous communication mechanism. Though
object orientation is not considered, the concurrency and communication issues are
of interest for our work.

4 Module Concepts

By examining the presented approaches and requirements on module concepts more
closely, one notices that they may be divided into two almost independent domains.
One aspect is the necessity to structure large systems to make them easier to extend
and better to understand. The other aspect is the reusability of already existing
components and the construction of libraries for those. To explicitly distinguish
between both aspects, we call the structuring units subsystems instead of modules
and discuss them in the following subsection, whereas units of reuse retain the name
module and are presented in subsection 4.2

4.1 Structuring large systems

To lower the effort of changes it is a good idea to divide a system into subsystems
which contain closely related features, are as independent of each other as possible,
have insuperable boundaries and precisely defined interfaces. To keep the indepen-
dence as large as possible, the subsystems should be connected to each other only
through communication as it is done in case of concurrent objects (cf. section 2).
That means no relationships like “component_of”, “object_valued_attribute_of”, or
“aspect_of” should be allowed.

In our approach, the interfaces of subsystems are built using objects called OF-
FER and REQUEST, which offer actions to other subsystems or need to get some
information from other subsystems, respectively. Each action of an REQUEST ob-
Ject has to be connected to an action of an OFFER object from another subsystem.
This is explicitly done in a communication section of an object system specification.
Inside a subsystem these two special objects participate in communication relation-
ships with the internal objects and establish in this way the connection between the
interface and the module body.

183

Hence, if one looks upon the whole system, he or she can see a number of sub-
systems connected through communication relationships between their OFFER and
REQUEST objects. If the point of view is changed to the internals of a subsystem, one
can see data type and object class definitions as well as a number of communicating
objects among them the objects OFFER and REQUEST.

Every subsystem may itself contain other subsystems, which are communicat-
ing through their OFFER and REQUEST objects. We w111 illustrate our language
constructs with an example.

Example 2 (airport information system): In the following, we continue the ex-
ample from section 2 by focussing on two subsystems, one for managing data about
flights, i.e. connections, flight schedules, delays etc., and another one for manag-
ing maintenance of planes, i.e. date of last maintenance, complaints, authorized
supervisors etc.

subsystem FlightData
object OFFER
actions
flight_schedule(date: date, !schedule: list(record(...)));
destination (flight#: nat, 'destination:);

end;
object REQUEST
actions
is_maintained (plane#: nat, !info: record(...));
end;
data type ...
object class ...
objects ...
behavior ...
end_subsystem;

Figure 2: Subsystem FlightData

The subsystem FlightData (see Fig. 2) offers information about flight sched-
ules for given dates and about destinations for given flight numbers. It needs the
information wether a given plane is maintained, that means wether it is allowed
to fly. The answer to this question is offered by the subsystem PlaneMaintanance
(Fig. 3). The connection of the two subsystems is done in the communication part
of the object system (Fig. 4). m]

If a new subsystem should be added to an existing system, it has to be declared
and all actions from its REQUEST-object have to be connected to actions from
OFFER~-objects from the already existing subsystems.

4.2 Reusing specifications

Initialy, one idea of the object oriented approach was to increase reusability with
help of concepts like inheritance. But it turned out that object classes are too small

184

subsystem PlaneMaintanance
object OFFER
actions
is_maintained (plane#: nat, !info: record(...));
end;

end_subsystem;

Figure 3: Subsystem PlaneMaintanance

object system Airport
subsystems
FlightData
PlaneMaintanance
communication
FlightData.REQUEST.is_maintained
do PlaneMaintanance.OFFER.is_maintained od;

end

Figure 4: Object System Airport

to support effective reuse and that it would be advantageous to reuse a set of classes
together with their relationships. These structures should be available in libraries
from where they may be imported into other specifications. In contrast to conven-
tional languages it is not enough to make access to routines or data types possible,
but the object structures should be integrated into existing ones, e.g. it should be
possible to build “component_of” and “aspect_of” relationships. Furthermore, these
reusable modules have to be made suitable for the current context. Here, module
operations as presented in [7, 11, 10] are of interest for our work. We will illustrate
these ideas and our language constructs with some small examples which may be a
little contrived but sufficient to explain our approach.

Example 3 (airline company): Suppose the airline company from example 1
should besides other things have its planes as components and should also have its
employees as such. Let in library A be a module Person/Staff which consist of
an object class Person and an specialized object class StaffMember. As shown in
Fig. 5, the module Person/Staff should be imported and become a component of
AirlineCompany. The corresponding TROLL statements are shown in Fig. 6. a

In general, imported modules are included in the current specification and their
object classes may be used to build complex object classes or nodes. Though, in
our opinion, whole subsystems as described in section 4.1 will often be too large
and hence too special to be reused, this should be possible in principle. To do so,
the module containing the subsystem has to be imported as shown in the previous
example and the REQUEST actions of the subsystem have to be connected to OFFER
actions of other subsystems as described in section 4.1.

As already mentioned, there should be some operations to adapt the library
modules to the current context. The provided operations are renaming, adding and
hiding.

185

LIBRARY A

Person

Airline
Company

Employees(Pers#) 1
ke .o T

. Person

botis b

Flest(plane#)

Figure 5: reuse of module Person/Staff

object class AirlineCompany
components
Fleet (planeNr: int): Plane
Employees (persNr: int): Person
attributes

end;
Import Person/Staff from A

Figure 6: TROLL specification of reuse

Example 4 (airline company): Let the object class Person of the imported mod-
ule Person/Staff in example 2 have attributes name, address and telNr. Suppose
that instead of name the attributes firstName and surname are needed and that
the telephonemimber shoud not be visible anymore. Then the import statement in
Fig 5 would have to be replaced by

Import Person/Staff from A
as (add attribute firstName to Person,
rename name to surname in Person,
hide telNr in Person).

0

To increase the reusability of modules, it should be possible to parameterize them.
The most common example to explain parameterization is a stack with elements
from an unknown type, which later has to be instantiated. The approaches [10, 11]
go one step further by allowing even modules to be used as parameters. Doing so,
something like a type for modules is needed. We are planning to provide similar
concepts, and in the area of semantic foundations some results already exist [17).

5 Concluding Remarks
In this paper we distinguished between two kinds of module concepts. On the

one hand we provided subsystems for the structuring of large specifications, which
are connected through communication relationships between special objects named

186

OFFER and REQUEST. And on the other hand we discussed concepts for the reuse
of specification operations allowing to adapt them to the current context.

The next steps of our work will be to introduce asynchronous communication be-

tween subsystems, to provide parameterization as explained above and to formalize
our language constructs.

References

(1]

2l

(3]

[5

6

[7

(10]

]

(12]

-~

A.J. Alencar and J.A. Goguen. OOZE: An object-oriented Z environment. In
P. America, editor, ECOOP*91, pages 180 - 199, Berlin, 1991. Springer.

G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language. User
Guide. Addison-Wesley, 1997.

G. Denker and P. Hartel. TROLL — An Object Oriented Formal Method for
Distributed Information System Design: Syntax and Pragmatics. Informatik-
Bericht 97-03, Technische Universitit Braunschweig, 1997.

H.-D. Ehrich. Object Specification. In E. Astesiano, H.-J. Kreowski, and
B. Krieg-Briickner, editors, IFIP WG14.3 Book on Algebraic Foundations of
Systems Specification. Springer, 1996. To appear.

H.-D. Ehrich and P. Hartel. Temporal Specification of Information Systems.
In A. Pnueli and H. Lin, editors, Logic and Software Engineering, Proc. Int.
Workshop in Honor of C.S. Tang, Beijing, 14-15 August 1995, pages 43-71.
World Scientific, 1996.

H.-D. Ehrich and A. Sernadas. Local Specification of Distributed Families of
Sequential Objects. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent
Trends in Data Types Specification, Proc. 10th Workshop on Specification of
Abstract Data Types joint with the 5th COMPASS Workshop, S.Margherita,
Italy, May/June 1994, Selected papers, pages 219-235. Springer, Berlin, LNCS
906, 1995.

Ehrig and Mahr. Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. Springer, 1990.

Eisenecker. Objektorientierte Software wiederverwendbar entwerfen. In Soft-
waretechnik '96, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements
of Reusable Object-oriented Software. Addison-Wesley, Reading, 1996.

J.A. Goguen and A. Socorro. Module Composition and System Design for the
Object Paradigm. Journal of Object oriented Programming, 7(14), 1995.

J.A. Goguen and W. Tracz. An Implementation Oriented Semantics for Module
Composition. 1997.

P. Hartel. Konzeptionelle Modellierung von Informationssystemen als verteilte
Objektsysteme. Reihe DISDBIS. infix-Verlag, Sankt Augustin, 1997.

187

[13] T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kusch. Revised Ver-
sion of the Modelling Language TROLL (Version 2.0). Informatik-Bericht 94-03,
Technische Universitit Braunschweig, 1994.

[14] Hogrefe. Estell, LOTOS und SDL. Standard-Spezifikationssprachen fir
verteilte Systeme. Springer, 1989.

[15] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TROLL — A Language
for Object~-Oriented Specification of Information Systems. ACM Transactions
on Information Systems, 14(2):175-211, April 1996.

[16] R. Jungclaus, R.J. Wieringa, P. Hartel, G. Saake, and T. Hartmann. Combin-
ing TROLL with the Object Modeling Technique. In B. Wolfinger, editor, In-
novationen bei Rechen- und Kommunikationssystemen. GI-Fachgesprich FG 1:
Integration von semi-formalen und formalen Methoden fir die Spezifikation von
Software, pages 35-42. Springer, Informatik aktuell, 1994.

[17] J. Kiister Filipe. Modelling Parameterisation in Concurrent Object Systems.
IGPL, 1997. In Conference Report: Workshop on Logic, Language, Information
and Computation (WoL LIC)’97, Fortaleza, Ceard August 20-22.To appear.

[18] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of abstract data types. J.
Wiley & Sons and B.G.Teubner Publishers, 1996.

[19] D.L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, 15:1053-1058, 1972.

[20] D.L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod-
ules. Communications of the ACM, 15:330-336, 1972.

[21] W. Pree. Design Patterns for Object/Oriented Software Development. Addison-
Wesley, ACM Press, Wokingham, 1995.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object—
Oriented Modeling and Design. Prentice Hall, New York, 1991.

[23] A. Riiping. Modules in object-oriented systems. In R. Ege, M. Singh, and
B. Meyer, editors, TOOLS 1 — Technology of Object-Oriented Languages and
Systems. Prentice Hall, 1994.

[24] A.J. Socorro Ramos. Design, Implementation and Eveluation of a Declara-
tive Object-Oriented Programming Language. PhD thesis, Oxford University
Computing Laboratory, Programming Research Group, Oxford, 1993.

[25] C.A. Szyperski. Import is Not Inheritance. Why We Need Both: Modules and
Classes. In ECOOP, pages 19 - 32, 1992,

188

