
Towards a Module Concept for Object Oriented
Specification Languages

Silke Eckstein

Technische Universitiit Braunschweig, Informatik, Abt. Datenbanken
Postfach 3329, D-38023 Braunschweig, Germany

e-mail: S.Eckstein@tu-bs.de

Abstract

The general aim of our work is the specification of distributed information
systems, that means reactive systems consisting ofone or more databases and
application programs. In this context the formal object oriented specification
language TRoLL was developed and is now going to be extended by module
concepts. In this paper we give a short introduction in TRott and a survey
over related work done not only in the object oriented setting but also in the
fields of specification languages in general, theory of abstract data types and
parameterized programming. When presenting our own module concepts we
explicitly distinguish between providing the possibility to structure a large
system on one hand and supporting the reuse of (parts of) specifications on
the other hand.

1 Introduction
Investigations concerning module concepts, modular languages and modularization
of software systems have been done since in 1g72 Parnas introduced the notion of
modules [19, 20]. Today it is widely accepted that a modular design of software
decreases its complexity, i. e. makes it easier to construct, validate, maintain, and
reuse software. In the past ten years a special kind of module has been developed:
the concept of object classes. Nowadays it turns out that additiona"l concepts are
needed in the object oriented setting to support reuse of specifications,as well as
implementations and structuring of large systems.

Some of the popular methods and languages for object oriented design, like for
example OMT [22] and UML [2], already provide module concepts, which allow
to structure a system into manageable parts. Unfortunately, these modules (also
called packages, subsystems etc.) are presented rather informally, i.e. they have
neither explicit interfaces nor can they be parameterized and module composition
operations do also not exist. [25] and [23] argue that object classes are too fine-
grained to structure a system and to be effectively reused. F\rrthermore, [25] remarks
that there may be a need to express invariants associated with more than one class.
More emphasis on reuse is layed in [8], who distinguishes between black box, glass

180

box und white box reuse. Another approach is taken in publications about design
natterng [21, 9] which may also be regarded as special kinds ofmodules.

As the main interest of our work is the specification of distributed information
systems, that means reactiv-e systems consisting of one or more databases and appli-
cation programs, the special requirements of boih

"r"*,
databases *a progr""riiog

languages, have to be considered and integrated. In this context the iorial oriect
oriented specification language Tnoll [12, B] was developed aud is oo*, going to b"
extended by a module concept.

-]he paper is organized as folows: In the next section we give a brief presentation
of rRor,l. Related work is discussed in section 3 and in section 4 our own modure
concepts are introduced. After all we give an outlook on our further work in the
5. section.

2 TRor,l
Information systems are distributed reactive systems consisting of one or more data-
bases and application programs. The object oriented languale tnor,r, [fi, ej **
developed for specifying information systems at a high leveiof abstraction.'The
current version 3 is based on ea,rlier investigations as described in [13, 1b]. The
textual language TRor,l was ryggleye$ed by the graphical variant Cirvrinor,r. [f6]wlrich borrows concepts from oMT [22]. rn the folowing we will give a brief survey
of the main concepts of the Tnor,r-ranguage. A more detailed description ca.n be
found in [12, 3].

_ A software system is considered to be a concurrent community of interacting
objects. objects a,re units of structure and behaviour and are classified in classes.
Structuring mechanisms are ag.gregation, resulting in compound objects, and spe_
cialization with inheritance. objects defined sepa.iately may be coniected through
global interactions, which a"re specified in the belavior part of an object system. wewill illustrate this with an example.

Example I (airport information system): In the following, we use a small pa.rt
of an airport information system to illustrate some of the la.n-guage constructs. Infigure I we define two object classes, passenger and mtri"?-cLp""f.

-
oir""*oj cta91 Pas'erger have got two attributes, Jo.o,u, which is .o*i*itroogiroot

the object live, and an address of data types striug and adr, ,"sp""tiu"ly.-Orr"
action, book flight, is specified. It has an input parameter nr, which stands for
the number of the flight to be booked. ror oulect, of class lirrine-corfany we
specified an attribute to store the office address and an action book, that is used to
book a seat in a flight ofiered by this company.

- Two objects, pass and conp, exist in the airport system. pass is an object of
class Passeager and conp is an object of class Airrine-conpany. The interaction
between these objects is specified in the behavior part of the ollect system whenever
the passenger pass books a flight, the action book of airliue .orop*y conp is called.

Though it is not specified in the example, one can imagine, tlatlhe olject crass
Airline-conpany may have a number of flights as components. Then the action
book would reserve a place in the flight withlhe given number. tr

The formal semantics of rRolr, is defined in different ways. Linea,r-time temporal

object class Passenger
attributes

nase: ;

address: addri
actions

book-flight(nr: nat);
behavior

end;

object class Airliue-CoroPanY
attributes

office-addr: addr;
actions

book(nr: nat);
behavior

end;

bject system AirPort
objects pass: Passenger;
objects conP: Airlitre-ConPary;
behavior

pass . book-flight (nr)

e
^

o -r, llr ri"'X'book
(nr) od ;

Figure 1: Airport-SYstem

Iogic is used for describing sequential object behaviour. For specifying interactions

bJ*een concurrent objects a distributed temporal logic is used, which is based on

n-agent logic. An interpretation through a denotational behaviour model is given

by lubell"de.,rent structures. The theoretical foundations are outlined in [4,5,6].

3 Related Work
Module concepts and similar approaches have been investigated in various fields such

as programming and specification languages, entity-relationship approach' theory of

abstract data types and parameterized programming'

In the area of algebraic theory of abstract data types Ehrig and Mahr [7] devel-

oped a module concept, where a module specification consists of four components,

which are given by algebraic specifications and combined through specification mor-

phisms. In the import interface' resources are specified which are to be provided

Ly other modules while the export interface contains the resources provided by

this module. As a common part of import and export the parameter describes the

generic resources to be instantiated in a concrete environment. The construction

of the exported resources from the imported is done in the body. Va.rious forms

of interconnections are provided, for example composition, actualisation, union, re-

alization and refinement. They are done by specification morphisms. A similar

approach can be found in [18]. Though this is an elaborate theory which provides

some useful concepts, not all aspects of our approach are coveled. For instance, we

have to deal with concurrent objects communicating with each other through action

calling.
rn 1rr1 a set theoretic approach to module composition is given, using.the no'

tions of iuple sets, partial signature and institution. Two kinds of specification

modules are distinguished, th-ories for describing properties of other modules and

packagesforspecifyingwhathastobe'implemented'Theoperationsonmodules

r82

are renaming, hiding, enriching, composition ofhorizontal and vertical modules, pa-
rameterization and instantiation. Views are used to bind specification modules to
theories. similar to the algebraic approach described above, this one also provides
some useful concepts which will help us, but it doesn't cover all aspects we a.re
concerned in.

There already exist some object oriented specification languages which provide
module concepts. Fooes [24, 10] supports horizontal and vertical composition,
abstract classes, parameterized modules, instantiation, import etc., but distribution,
concurrency and communication are not considered. similir concepts are offered by
Oozn [1] which is syntactically based on Z.

A quite different approach was taken in the area of protocol specification for
distributed systems. In this context the specification language Estelle [14] was de-
veloped, which is based on extended finite state automata. In Estelle, moduies repre-
sent the (concurrent) components of a system. They may contain submodules that
may be connected sequentially or concurrently. Modules communicate with each
otber through channels using an asynchronous communication mechanism. Though
object orientation is not considered, the concurrency and communication issues are
of interest for our work.

4 Module Concepts
By examining the presented approaches and requirements on module concepts more
closely, one notices that they may be divided into two almost independent domains.
one aspect is the necessity to structure large systems to make them easier to extend
and better to understand. The other aspect is the reusability of already existing
components and the construction of libraries for those. To explicitly distinguish
between both aspects, we call the structuring units subsystens instea.d of modules
and discuss them in the following subsection, whereas units ofreuse retain the name
nodule and are presented in subsection 4.2

4.I Structuring large systems
To lower the effort of changes it is a good idea to divide a system into subsystems
which contain closely related features, are as independent of each other as possible,
have insuperable boundaries and precisely defined interfaces. To keep the indepen-
dence as large as possible, the subsystems should be connected to each other only
through communication as it is done in case of concurrent objects (cf. section 2j.
That means no relationships like "component-of", "object-valued_attribute_of", or
"aspect-of" should be allowed.

In our approach, the interfaces of subsystems are built using objects called or,-
rpR and Rnqunsr, which offer actions to other subsystems or need to get some
information from other subsystems, respectively. Each action of an Rnquosr ob-
ject has to be connected to an action of an or.r.pR object from another subsystem.
This is explicitly done in a communication section of an object system specification.
Inside a subsystem these two special objects participate in communication relation-
ships with the internal objects and establish in this way the connection between the
interface and the module body.

183

Hence, if one looks upon the whole system, he or she can see a number of sub-
systems connected through communication relationships between their oproR and
Rseupsr objects. If the point of view is changed to the internals of a subsystem, one
can see data tipe and object class definitions as well as a number of communicating
objects among them the objects Or.rnn and Roquesr.

Every subsystem may itself contain other subsystems, which are communicat-
ing through their orppn and Rnqunsr objects. we will illustrate our language
constructs with an example.

Example 2 (airport inforrnation system): In the following, we continue the ex-
ample from section 2 by focussing on two subsystems, one for managing data about
flights, i.e. connections, flight-schedules, delays etc., and another one for manag-
ing maintenance of planes, i.e. date of last maintena,nce, complaints, authorized
supervisors etc.

' subsystem FlightData
object OFFER

ections
flight_schedule(date: date, !scheduLe: list(record(. . .))) ;
destination (flight#: nat, !d€stination:);

end;
obJ'ect nEQLEST

actions
is_naintained (p1ane*: nat, !info: record(...)) ;

end ;
data type ...
objectclass ...
objects ...
behavior ...

end-subsystem.t

Figure 2: Subsystem FlightData

The subsystem FlightData (see Fig. 2) ofiers information about flight sched-
ules for given dates and about destinations for given flight numbers. It needs the
information wether a given plane is maintained, that means wether it is allowed
to fly. The answer to this question is ofiered by the subsystem plaaeMaintaranc€
(Fig. 3). The connection of the two subsystems is done in the communication pa,rt
of the object system (Fig. 4). n

If a new subsystem should be added to an existing system, it has to be declared
and all actions from its Requesr-object have to be connected to actions from
OrrnR-objects from the already existing subsystems.

4.2 Reusingspecifications
Initialy, one idea of the object oriented approach was to increase reusability with
help of concepts like inheritance. But it turned out that object classes are too small

184

su bsystem PLanel,laint aaarrce
ob./bcf oFFER

ections

. is_naintain€d (p1ane#: nat, !info: record(..,))i
end;

"n)tubryrt"^;
Figure 3: Subsystem planeMaintanance'

object system Airport
subsystems

FlightData
pl.anellai.ntanarrce

communication
lightData. nEQlrEST. is_naintained
do Plaael{aiataaance. oFFER, is_naintaitred od i

end''

Figure 4: Object System Airport

to support effective reuse and that it would be advantageous to reuse a set of classes
together with their relationships. These structures should be available in libraries
fromrrhere they may be imported into other specifications. In contrast to conven_
tional languages it is not enough to make u"""., to routines or data types possible,
but the object structures should be integrated into existing orr"r,

".g.
it should be

possible to build "component-of' and "aspect-of" relationsiipr. rt rtiur*oiu, in"r.
reusable modules have to be made suitable for the current context. Here, module
operations as presented in [2, 11, l0] are of interest for our work. we will illustrate
these ideas and our language constructs with some smalr examples which ,ouy b"

"little contrived but sufrcient to explain our approach.

Example 3 (airline company): Suppose the airline company from example 1should besides other things have its planes as components and should also have its
employees as such. Let in Iibrary A be a module person/Staff which consist of
an object class Person and an specialized object class staffMenber. As shown in
Fig. 5, the module person/staff should be imported and become , co-porrerrt ofAirlineConpany. The corresponding Tnou statements are shown in Fig. 6. D

- In general, imported modules are included in the current specification and their
object classes may be used to build comprex object classes o, nodes. irr"rg;, i"
our- opinion, whole subsystems as described in section 4.1 will often be too large
and hence too special to be reused, this shourd be possible in principle. To do so,
the module containing the subsystem has to be imjorted as shown in the previous
example and the REeuEsr actions of the subsystem have to be connected to orren
actions of other subsystems as described in section 4.1.

As already mentioned, there shourd be some operations to adapt the libra,ry
modules to the current context. The provided op"r"iioo, are renaming, adding and
hiding.

185

LIBRARY A

f'*-l.+
,4/ l-.;n-1

/a
lMemb€B I

Figure 5: reuse of module Person/Staff

object class Aj.rlinecompany
components

Fleet (planeNr: int): Plane
Enployees (persNr: rnt): Pergon

attributes

end;
lmport Persoa/Staff from A

Figure 6: TRor,r, specification of reuse

Example 4 (airline company): Let the object class Person of the imported mod-
ule Person/Staff in example 2 have attributes na.ttre, address and telNr. Suppose
that instead of naroe the attributes firstNane and surnane are needed and that
the telephonemimber shoud not be visible anymore. Then the import statement in
Fig 5 would have to be replaced by

lmport Persot/Staff from A
as (add attribute firstName fo Person,

rename name to surnane ln Person,
hide te1Nr m Person)

n

To increase the reusability of modules, it should be possible to parameterize them.
The most common example to explain parameterization is a stack with elements
from an unknown type, which later has to be instantiated. The approaches [10, 11]
go one step further by ailowing even modules to be used as parameters. Doing so,
something like a type for modules is needed. We are planning to provide similar
concepts, and in the area of semantic foundations some results already exist [12].

5 Concluding Remarks
In this paper we distinguished between two kinds of module concepts. On the
one hand we provided subsystems for the structuring of large specifications, which
are connected through communication relhtionships between special objects named

186

oppoR and Rrquest. And on the other hand we discussed concepts for the reuse
of specification operations allowing to adapt them to the current context.

The next steps of our work will be to introduce asynchronous communication be_
tween subsystems, to provide parameterization as explained above and to formalize
our language constructs.

References

llj A.J. Alencar and J.A. Goguen. ooZE: An object-oriented z environment. In
P. America, editor, ECOOp,9l, pages lg0 - 1gg, Berlin, 19g1. Springer-

[2] G' Booch' J. Rumbaugh, and L Jacobson. (Inified, Modeling Language. (Jser
Gzide. Addison-Wesley, 1gg7.

[3] G. Denker and P. Hartel. TRor,l - An object oriented Formal Method for
Distributed Information system Design: syntax and pragmatics. Informatik-
Bericht 97-03, Technische Universitdt Braunschweig, 1gg7.

[4] H'-D' Ehrich' object specification. In E. Astesiano, H.-J. Kreowski, and
B. Krieg-Briickner, editors, IFI? wG14.J Book on Algebraic Foundations of
Systems Specification. Springer, Igg6. To appear.

[5] H.-D. Ehrich and P. Hartel. Temporal specification of Information systems.
In A. Pnueli and H. Lin, editors, Logic and, Software Engineering, proc. Int.
Workshop in Honor of C.S. Tang,Beijing, 1l_15 Augusi 1995, f,ages 43_71.
World Scientific, 1996.

[6] H.-D. Ehrich and A. sernadas. Local specification of Distributed Families of
Sequential Objects. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, ;ecent
Trend's in Data Types specification, proc- 10th workshop o"'sp""rtr"otion oy
Abstract Data Types joint uith the ith coMpASS woikshop,'s.Margherito,
Italy, May/June 19g1, Selecteil papers, pages 21g_235. Sprirrger, BerUnlLttCS
906, 1995.

[7] Ehrig and Mahr. Fund,arne.ntals o! Atgebraic Specification p: Module Specifica_
tions and Constraints. Springer, 19g0.

[8] Eisenecker. objektorientierte software wiederverwendbar entwerfen. rn soft-
waretechnik '96,1996.

[9] E. Gamma, R. Helm, R. Johnson, and J. vlissides . Design pattenrs
- Elernents

of Reus able Obj ect- ori,enteil S oftw are. Addison_Wesley, Reading, 19g6.

[10] J.A. Goguen and A. socorro. Module composition and system Design for the
Object Paradigm. Joumal ot' Object ori,enteil prograrnrniig, T(14), l;gb.

[11] J.A. Goguen and w. Tiacz. An Implementation oriented semantics for Module
Composition. lgg7.

[12] P. Hartel. Konzeptionelle Mod,ellierung uon Informationssystemen als aerteilte
Objektsysterne. Reihe DISDBIS. infix-Veriag, Sankt Augusiin, 1992.

't87

[13] T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kusch. Revised Ver-
sion of the Modelling Language Tnorr (Version 2.0). Informatik-Bericht 94-03,
Technische Universitdt Braunschweig, 1994.

[14] Ho$efe. EsteIIe, LOTOS und SDL. Stand,ord,-Spezifi,kationssprachen fii,r
uerteilte Systerne. Springer, 1989.

[15] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TRor,r, - A Language
for Object-Oriented Specification of Information Systems. ACM lTansactions
on Mormation Systems, 14(2):175-211, April 1996.

[16] R. Jungclaus, R.J. Wieringa, P. Ha.rtel, G. Saake, and T. Hartma"nn. Combin-
ing TRot l, with the Object Modeling Technique. In B. Wolfinger, editor, /n-
noaationen bei Rechen- unil Kommuni,leationssystemen. Gl-Fachgespriich FG 1:
Integrati,on uon serni-formalen unil formolen Methoilen fiir ilie Spezffikation aon

. Software, pages 35-42. Springer, Informatik aktuell, 1994.

[17] J. Kiister Filipe. Motielling Pa.rameterisation in Concurrent Object Systems.
I G P L, 7997. In Conference Report: Workshop on Logic, Language, Information
and Computation (WoL LIC)'97, Fortaleza, Cearri August 20-22.To appear.

[18] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specificotion of abstract ilata types. J.
Wiley & Sons and B.G.Teubner Publishers, 1996.

[19] D.L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, L5:1053-1058, 1972.

[20] D.L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod-
ules. Cornmunications of lhe ACM, 15:330-336, 1972.

[21] W. Prce Design Potterns for Object/Oriented. Softworc Deaelnpment. Addison-
Wesley, ACM Press, Wokingham, 1995.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. OUject-
Orienteil Moileling and Design. Prentice Hall, New York, 1991.

[23] A. Riiping. Modules in object-oriented systems. In R. Ege, M. Singh, and
B. Meyer, editors, TOOLS 1 - Technology of Object-Orienteil Languages anil
Systems. Prentice Hall, 1994.

[24] A.J. Socoro Ramos. Design, Implernentation anil Eaaluation o! a Declara-
tiae Object-Orienteil Programming Language. PhD thesis, Oxford University
Computing Laboratory Programming Research Group, Oxford, 1.993.

[25] C.A. Szyperski. Import is Not Inheritance. Why We Need Both: Modules and
Classes. ln ECOOP, pages 19 - 32, L992.

188

