
Bntity Relationship models and Object
Oriented models: a one-to-many

relationship?
Christina Daviesr , Brian Lazelllz,Jill Doaket, Ishbel Duncanr

'Computer Science Department, Anglia Polytechnic UniveNity, East Road, Cambridge CB I lPT, UK.
2Medicines Control Agency, I Nine Elms Lane, London SW8 5NQ,UK

Abstract
In this study a comparative evaluation was cmied out of OO md ER (Entity Relationship) bmed design
techniques. It was hypothesised that, using ER modelling, rclational data malysis and functional
decomposition, an Object Oriented (OO) deign could be produced which was at least s good as that
produced using m explicitly OO nrcthodology.. The study consisted of re-working a published OO
derived design (for a word processing system); the ER model and Data Flow Diagrans produced in this
reworking were then mapped on to m OO dcign md the two dsigns evaluted ming a range of simple
metrics,

It ws noted that the ER model consisled of fewer classs md demnstrated lower coupling between
classes. The differences were nol lilge, but the ER derived design perfomd the functions of two of the
sub-systems dehned in the OO dsign. It could thu bc agued that the ER derived design is likely to
prove to be simpler to implement and emier to test md maintain thm the OO exemplar. It is suggcsted
that these differences are due to the frct that, although using ideas inherited from ER modelling, OO
modelling dms not emphmise the ned to qstablish a miniml data mdel.

l.Introduction.
1.1 Background
Exponents of Objcct Oricnted (OO) modclling vary in rhe cxtent to which they
acknowledge a dcbt to Entity Relationship (ER) modelling and Relational Dara Analysis
(RDA) (sec for cxample t2l, t161, tI'71, 1221). The methods of design offered for OO
systerirs have becn developed by researchers from a variety of backgrounds, some of
whom had an earlier background in ER modelling and relational theory and some of
whom have no such prior knowledge. Proponents of the new techniques all assume,
without necessadly testing their assumption experimentally, that 'conyentional' data
modelling techniques will be inadequate for OO modelling and that a new approach is
nccded. Our suggestion is that, on the contrary, ER and relational modelling together
produce the minimal data model which is best used as a basis for the OO data model and
that associated techniques of functional decomposition and production of Data Flow
Diagrams (DFD) are adequate to assign methods to the data objects. The object of the
study described in this paper was to test further this hypothesis that these techniques can
be used reliably to produce an OO design which is at least as good as tlat produced by
newer techniques specihcally intended for design of OO systems. It carries on from an
carlier study [8] in which we used ER and relational techniques t3], t6l, to produce a

rival design to onc published as an instancc ofgood OO design (Haythorn [13]).

In that study we followed Haythom in scoring the two designs by measuring the
percentage of code that must be understood in order for a programmer to make changes;
this measure had been proposed by Haythorn as giving an estimate of the relative



maintainability of designs. Results of that study suggested that a design obtained
through ER modelling and RDA (referred to for convenience in the rest of this paper as
'ER derived') could be mapped on to an OO design which was at least as
'maintainable', according to this measure, as one presented by an experienced oo
designer as a good OO derived design.

In the study to be described here, we again compared an oo with an ER derived design,
but for a much larger case study. The case study used here is on! detailed in a standard
text (Wirfs-Brock et al., [23]). In that text an OO approach is used to design a word
processing system. we were interested in this case study since it provides a challenge to
the relational and entity-based approach: it is not an Information System as most people
would define one. Methodologies based on ER modelling and RDA, such as SSADM,
are presented specifically as being unsuitable for real-time applications [21]. we
reasoned that if we could produce a good design for this system using ER modelling and
associated techniques then the case for suspecting that such techniques rernain
appropriate for producing oo models for lnformation systems, even where there are
good reasons for using an oo implementation language or DBMS, is strengthened. The
word processing system is the hard case against which we test our hypothesis. our
earlier paper [8] tackled a relatively small system needing only simple data structures (a
queue manager for an automated queuing system in a bank). Here we attempt the design
of a relatively large system involving complex in-memory data structures.

For the purposes of this experiment, the authors concentrated on two object-oriented
diagramming techniques used by wirfs-Brock - the object Model (called a Hierarchy
Graph in the text) and the Collaborations Graph.

we must stress that we are not concerned here with the debate between advocates of oo
and relational databases, but with the best design technique for arriving at a good oo
design. we do not argue that oo programming languages are not enormously useful,
nor offer an opinion one way or another as to the relative merits of oo and Relational
Databases. Rather, this paper is concemed entirely with the question of evaluating
design techniques for a system for which an oo implementation has been chosen.

2. Procedure.
2.1 The Experiment
The experiment was based around the oo design for a word-processing system
published in a standard text [23]. Two of the present authors attempted the rask of
producing a new design for part of this system, using a sub,set of the techniques of
ssADivI [21]. The resulting relational design was mapped by them on ro an oo design
in such a way as to match the diagramming technique of wirfs-Brock. The other two
authors, experienced in oo design techniques, then carried out measuEments on both
designs to try to arrive at a comparative evaluation.

22The Target OO Design and its derivation.
The case study concerns a standard word-processing system for a windorving
environment. As the system is a complex one, wirfs-Brock starts her design process by
splitting the word processing system into sub-systems, she describes sub-systems as
'groups of cla,ises that collaborate to produce d clearly delimited unit of functionality'

169



[23 pl35] but sets about finding her sub-systems in the same way as she finds classes,
ie by looking for nouns and noun phrases in the problem specification. Having made her
decisions about sub-systems, Wirfs-Brock goes on to identify classes. The noun-phrase
analysis is followed by the discarding of unsuitable nouns or noun-phrases - "things
outside the system .. noun phrases rcpresenting attributes of other things... and phrases
that seem obviously spurious" [23 p205]. Attributes and responsibilities are then
allocated to classes and relationships between classes (generalization-specialization and
collaborations) are established. The design is expressed in the form of a Collaboration
Graph (see Figure 1). Sub-classes are shown as nested within the encompassing
rectangle of their parent class. Classes have 'contxacts' with each other. A contract is
the list of requests that a client class can make of a server class. Both must fulfil the
contract: the client must make only those requests that the contract specifies, and the
server must respond appropriately. These contracts form collaborations between classes
and are modelled as lines joining classes: each line is numbered with the appropriate
contract number. Wirfs-Brock sees the Collaboration Graph as a description of all of the
paths along which information can flow between classes covering all possible scenarios.
As such it can be seen as a time lapse exposure of all the routes traversed as message
passing takes place between a set of classes as each possible scenario is executed.

Figure 1. Collaboration Graph for OO derived design (after [23])

Document Subsyslem

2.3 Producing the ER derived Design.
The initial intention had been to accept the OO author's division of the Word Processing
system into sub-systems and to produce, as she did, a design only for the Document
Sub-system. However this proved extremely difficult. The functionality of the

170



Document sub-system seemed to the ER designers to be inextricably tied up with that of
the Editing sub-system. For this reason, the ER designers proceeded as foliows:1. They produced an overalr data model, in the shape of an Entity-Relationship
diagram, from the system description given in [23].
2. A set of DFDs was produced as a means of identifying processing required and to
help confirm the data model. The top level DFD is shown in i.igure 2. 

-
1: Fgr this ER diagram, hierarchy graphs were produced. This was achieved by
identifying sub or super-types on the ER diagram; iuper/sub-type entities were then
mapped directly as parenrchild classes in the oo design. The'hierarchy graphs thus
produced were used directly to produce the classes to be placed on a co-llaboration
Graph for the complete system, excluding onry the services provided by or for what the
ER designers regarded as extemal entities (eg the Disk operating System, printe.s etc.;.
These had been identified whcn producing the DFDs.
4. The processes identified in the top level DFD were used as the basis for identifying
necessary collaborations between classes on our own version of the collaboration Giaph
. (Sce Figure 3).
5. The functions carried out by each of our top level processes were checked with
wirfs-Brock's collaborations to ensure that our systom h;d equivalent functionality to
hers. If necessary thc DFD would havc bcen morlifictr at this stage to make gooJ'ony
shortcomings in functionality.

Figure 2: top level DFD for the Word processing system.

Save. L

Update

Mark,
Cancel



2.4Metrics used.
Once the new OO design had been produced, both it and that of Wirfs-Brock were
subjected to the set of metrics detaiied below. Although they are in common use they
all have problems associated with them and these are discussed in Section 4.2.

Number of Classes: this is a simple count of the total number of classes used in
the design.
Number of Collaborations: total number of colla\orations appearing on the
collaboration graph. In the diagrams shown this is simply the total number of
individual lines connecting two classes on the graph.

Fan-in and fan.out: the fan-in of a module M is defined as "the number of local
flows that terminate at M, plus the number of data structures from which
information is retrieved by M" t121. Fan-out is defined as "the number of local
flows that emanate from M plus the number of data structures that are updated by
M" [12]. We report both the maximum and mean fan-in and fan-out for each of

. the two designs,
Depth of inheritance: for any node in a class inheritance tree, the Depth of
Inheritance (DlT) is the length of the maximum path from the node to the root of
the tree. We report the maximum DII for each of the two designs.
Numberof Children: the number of direct 'successors' of a class. We report the
maximum number of children for any class in each of the designs.
Number of Disparatc Class Hierarchies: the design process results in a family
of inheritance trees. The number of disparate class hierarchies is the number of
discrete inheritance trees, ie those that do not share any classes.

Most of these metrics are in use as measures of coupling between objects. Coupling
between objects, as defined in [4] is, for a given class, 'rfte number of other classes to
which it is coupled'. The fan-out and fan-in of a class 'refer to the number of other
collaborating classes itespective of the number of references made statically or
dyrumically' [14]. Some authors actually take fan-in and coupling between objects to
be synonymous [14 p115]. For non-OO systems fan-in and fan-out are typically
combined to give a measure of complexity of information flow [15], [20] and there have
been studies validating these measures as predictors of maintenance effort [19].
Chidamber & Kemmerer [4] also propose Depth of Inheritance as measures of coupling;
DIT indicates how many ancestor classes are able to affect a given class. The number of
disparate hierarchy frees and the number of collaborations can also be taken as an
indicator of the degree of coupling between classes within the system.

The number of classes, on the other hand, is a crude measure of the potential size of the
system. Clearly, however, if two designs differ greatly in the number of classes we
might suspect that those designs werc based on fundamentallt different treatments of
the system requirements.

3. Results.
Figures I and 3 show the Collaboration Graphs for each of the two designs. We follow
[23] in showing sub+lasses as contained within t]re recta,ngle of their parent class.
Numbers on or collaboration gmph refer to the processes identified in the DFD (Figure
2). Table 1 was extracted from the information shown in these two figures.

r72



Figure 3. Collaboration Graph for ER derived design

Table I : Comparison of Wirfs-Brock and Davies&Lazell models

The ER derived design showed the following characteristics:

I 07o fewer classes
l5% fewer collaborations
shallower depth of inheritance

Measure

-

Numbcr of Classs (Toral)
OO derivcd dcsisn TETle.i""a a#

r'{umber of Collaborariom (Toral } -TIdran-tn (Max)
Fanln (Mean)

Fan-Out (Max)
Fan-Out (Mean)

5

1.03

12

1.06

6
0.84

4
0.66
3

4
12ffi



t 507o more disparate hierarchies
r substantially lower fan-out
r sliglrtly lower mean fan-in

All of these differences, although small, are in the same direction: the ER derived model
shows less coupling and hence could be expected to be simpler to implement and
maintain.

4. Methodological Problems.
Two types of problem arose while carrying out and analysing this experiment. Some
specific problems relate to mapping from an ER model to an OO one, not in the sense

that it was as difficult to produce such a design but in the sense that it was difficult to be
sure that we specified our OO design in such a way as to provide a fair comparison
between the two designs. The second type ofprobiem is associated with the choice of,
and interpretation of, metrics by which to evaluak the two designs.

4.1. Problems with mapping the ER derived model to a Collaboration Graph.
Wirfs-Brock distinguished in her collaborations between client and server. The
processes identified by the ER modellers did not fall easily into such a classification,
reflecting the fundamental difference in approach between the two design tearns. In
order to maintain some consistency in the direction of 'collaboration' on our graph, we
showed collaboration as proceeding in the direction of data flow between the two
classes involved. This was an arbitrary decision but as long as it is consistently applied
has no effect on the complexity of the collaborations shown.

The decision as to what level of detail to go down to in the DFD when choosing
processes to include on the Collaboration Graph was also of necessity subjective.
However, in an attempt to ensure the comparability of our processes with Wirfs-Brock's
collaborations we referred to the complete list of methods provided by her as a

supplement to her Collaboration Craph. We checked to ensure that all of our processes
together could provide the services carried out by all of her methods.

42 Problems with metrics
Metrics for design assessment are few and unsophisticated. Measurements such as the
number of classes, fan-in and fan-out are the simplest and easiest to apply at early
design stages. They are generally taken as predictot's of maintenance effort [4] and this
has some empirical support [20].

However, many metrics have been developed explicitly to enable one company to
accumulate figures about iLs own productivity in order to cost new projects (eg

COCOMO, tll tl01). lrss attention has been paid to the development and use of
metrics to perform comparative evaluations of designs produced under different sets of
conditions or by different development teams. Different development teams will be

under different imperatives (whether to minimise lines of code, minimise function calls
etc) and this will constrain their work. In our study, it is quite possible that the ER
derived design offered here was unconsciously influenced by the ,equired outcome of
the study.

174



we have used here one particular interpretation of the term 'coupling'. However, there
has been disagreement over a definition ofthe term .coupling' 

and the extent to which
peer-to-peer and inheritance coupling should be reated separately (eg [14, pll2]). A
more precise metric which takes account of the inheritance ouerleaos of coupling is
required; a simple count of the number of classes in a coupling thread might suffice.
However, this is a very fine grained measure and the time taken to deliver a result would
preclude its use for measuring the complexity of coupling of anything but small clusters
of classes.

5. Discussion
5.1 Differences between the two designs.
In this study, an ER derived design demonstrated lower coupling than the corresponding
oo design against which it was measured. The maximum fan-out for the wirfi-Brock
design was 12 and the average 1.06. In comparison our ER derived model had a
maximum fan-out of 4 and average of 0.66. Thus, coupling dependencies were lower in
the ER model. The number of disparate class hierarcirierls in wi.rr-nrock compared
with 12 in the ER derived design) echoes the nature ofthe decoupling, as does the io*er
total number of collaborations (41 compared with 49).

It has to be noted that there was some concern over the extent to which we were
comparing like with like; classes from one methodology will describe a different type of
activity, and therefore different states, from other classes developed using a diiflrent
technique. However, the ER approach did resurt in r\vo fewer claises than did tre oo
approach, and more than 1570 fewer collaborations, in a system with greater overall
functionality.. Atthough it is difficult to assess the effect of future alteraiions, this first
cut design suggests that the ER approach would be easier to implement, test and
maintain because of the smaller overheads of test harnesses and regression testing
performed dwing maintenance. It is commonly accepted that fewer coupiings and iowe.
fan-out indicate that the system will be more ro-bust under 

"orr."tin"1, adaptive
maintenance [141.

However, it is true to say that no measures of the overheads of inheritance were taken
into consideration. some collaborations are modelled in a way which make parent
classes appear to collaborate when it is in fact their child classes that do. For example,
one contract in the wirfs-Brock model indicates a contract of the abstract parent class
view. outline view, its concrete child class, serviccs this contract by collaborating with
outline Elemenr through its parent view Element. A singre coupling here aCtually
involves routing through four classes. It is quite possible that suchhid"den complexity
exists in the ER derived design.

Fan-in not only contributes to a measure of the complexity of information flow but can
also be used as a measure of the re-use of a class, as it demonstrates the number of
classes requiring contracts to be fulfilled by the calling class. The oo model showed a
higher mean value of fan-in than the ER model, implying grcater reuse of classes.
similarly the Depth of Inheritance metric (DIT) tal, whiih *as greater in the oo model,
not only measures coupling but also indicates degree of re-use. The Drr metric shows
that the oo approach involves both more generalisation and more specialisation. This
implies a higher level of re-use for classes wiihin the inheritance hierarchy but it also

l7s



gives a higher overhead for testing. More information is required on the shape
(especially the breadth) of the inheritance tree in order to determine likely maintenance
overheads of each design.

Another interesting difference between the two designs lies in the reduction of the
problem by wirfs-Brock into one of the design of sub-systems. In ER derived design,
sub-systems could be identified, if the system were complex enough for this to be
desirable, by reference to the top level DFDs. one procass box is expanded into
successively greater levels of detail of process design and thus one top level process box
could plausibly be taken as basis for a sub-system for design purposes. Thus any sub-
systems identified would mirror units of functionality.

wirfs-Brock's design technique involves first identifying sub-systems. For example,
she decided that the editing functions of the wp system form a separate sub-system
from the functions that concern the structure and visual representation of a document.
sub-systems are identified in the same way as classes, ie by looking for nouns and noun
phrases in the problem specification. These, however, seem inappropriate; in this case
their use has not produced sub-systems of cohesive functionality. The particular choice
of sub-systems is largely responsible for extra message passing in the Ob design.

6.2 Conclusions.
In spite of the problems identified with comparing designs derived from different
methodologies, and in comparing designs at all, some conclusions can be offered.

The ER derived model can be accepted as at least as good as the oo model, on a range

9f meftics of design quality, and there are suggestions that the ER derived design may
be slightly superior. For example, the ER derived design consisted of fewer classes and
fewer collaborations between classes, for a design that had greater functionality than
that of the oo design. It may well be that the ER design would need added classes
when implemented (there are no abstract classes in our design) but there was nothing in
the design process suggesting the need for such classes. Although some of the measured
differences between the two systems are small, they are all in the same direction:
together they suggest that the ER derived model could be implemented to give a system
that is easier to test and maintain than could the OO derived design.

Equally interesting, however, are the similarities of the designs. The two designs have.
many classes in common; inspection of these classes at a high level of abstraction
suggests that they have largely the same attributes and serve broadly similar functions.
Exact functionality can only be evaluated by black-box testing at codi level.

There are several possible reasons for the perceived design similarities. we introduced
this paper by pointing out that oo authors differ in the extent to which they explicitly
use techniques from ER modelling and relational analysis. It is possible thai some who
claim to use design techniques that have no link with ER modelling nevertheless relain
habits of thought which are conditioned by knowledge of ER modelling andl/or the
relational database model. As an example, coad and yourdon [5] acknowledge that
their object-oriented Analysis (ooA) builds on the 'best concepts' from Lveral
different methods including lnformation Modelling, which they define as the use of
Entity-Relationship Diagrams and semantic Data Modelling. Their advice when trying

176



to identify 'pertinent class-&-objects'is to look for useful real-world abstractions in
the problem domain. In common with many other oo writers, they then offer a list of
criteria to use in deciding which classes should be discarded and which should be
expanded to more than one class. Many of these criteria have their roots in relational
data analysis and normalisation theory. However, without an explicit foundation in the
theory underlying relational analysis, such criteria are likely to prove difficult to apply.
None of the rigour of ER modelling or normalisation can be hamessed since coad and
Yourdon explicitly exclude formal modelling.

Rumbaugh et al. [18] also acknowledge that they borrow many concepts from relational
analysis. However, their methodology also debars the software developer from carrying
out formal data modelling; it explicitly rules out use of the concept of unique identifiers.
It is asserted that all objects have unique identity and are distinguishable by ,their
inherent existence' and not by the value of any of their attributes. Two objecis could
theoretically have identical attribute values and still have unique identity. They claim
that'most object-oriented languages automatically generate implicit idintifiers with
which to reference objects, there is no need to invent unique identifiers as in relational
analysis, 'explicit object identifiers are not required in an object model .. they are
computer anefacts and have no intinsic meaning' t I 8 p241.

Rumbaugh's methodology requires designers to identify associations between classes
which are essentially equivalent to ER rclationships. Just as in ER modelling, designers
are asked to identify association classes, i.e. classes which break up many to many
associations, thus avoiding the loss of informatioh which characteriri, rnuny to many
relationships. In our experience of undergraduate tcaching, students leaming 60 design
find these conccpts cxtremcly hard to apply without reference to ER concepts.
Unpublished studies in this Department of system designs produced by amateurs (eg

rylearch studcnts in subjects other than computer science) wiih no knowiedge of ER or
oo dcsign also suggcst that rclations (or classes) whose function is to resolie many-to-
many rclationships are those which these amateurs lind most difficult to identify.

It seems that many oo authors acknowlcdge thc dcsirability of the goals of ER design,
but sccm deliberately to avoid offering a rigorous set of steps to take to achieve these
goals. one possible explanation, thereiore, for the similarity bet*"en the two designs is
that one implicitly uscs techniques used explicitly by the other.

From this and our previous study we offer thc hypothesis that for the one model based
on ER modelling and relational analysis that would be produced by the majority of
practilioners experienced in these tcchniques, therc is a set of varianis (which-, we are
tempted to suggest, are likely to be ill-advised variants) produced via oo modelling
techniques which deliberately cschcw the benefits of older ?orms of data modelling and
function design.

There is one important caveat to offer: if, as we suspect, relational and ER modelling
when carried out correctly will tend to result in more efficient designs, this superiority
may be offset by ease of use of oo techniques. It may turn out that, although oo
design methods lack the precision of RDA and ER modelling, they result in moreleople
being able to produce more acceptable designs in a shorter time. This possibilityis still
to be fully investigated.

t77



6. Summary and Further Work.
In this comparison between an OO and ER derived design, the following
methodological problems were identified:

1. The particular OO desiga technique used in [23] resulted in fundamentally different

sub-systems from ours. This made it difficult for the investlgators to adherc to the OO

specification for the particular sub-system to be modelled.
2, Although a mapping could be found from processes to collaborations it is not
possible to defend this mapping rigorously and any such mapping relies on subjective
judgement.

3. Although we used some metrics applicable at the design stage, validation of these

few metrics must await implementation of both designs, or at least more detailed design.

4, Some metrics used at the design stage, such as depth of inheritance, will be heavily

influenced by the development environment in which the designers work. This means

that they must be interpreted with caution when used between, rather than within,
individuals or groups. No one measure on its own will be sufficient to detect

differences in designs.

The two designs, derived from two different design methods, were qualitatively

substantially the same but showed small but consistent quantitative differences.
Although the differences between the two designs were small, the ER model scored

better on all measures. It had fewer classes and lower coupling and it had substantially
greater functionality, encompassing the functionality of two of the sub-systems defined
in 231. On 0re basis of these measures, it seems likely that the ER derived design will be

simpler to implement and maintain than the OO design. The difference in organisation
of the designs into sub-systems seemed to result from aspects of the OO designer's
design technique. The OO solution resulted in unnecessary message passing between

classes which contibuted to the quantitative differences between the ER and OO
derived designs,.

To follow up our study, both designs will be at least partially implemented and the

predictions of the metrics reported here tested. More detailed measurements, especially
Function Point Analysis or a measure derived from it [1] will be carried out on the

designs discussed here and on lower level designs to be produced as part of the

implementation phase. We also hope to tackle the much more difficult problem of
evaluating designs for OO systems which have been produced by practitioners in "real
life" environments, Field trials comparing design methodologies arc exffemely difficult
to set up, but the importance of determining the relative efficacy of lnformation System

Design techniques (what one might call "evidence-based computing") is important

enough for considerable effort to bejustified.

Rderences
l. Boehm, B.W. (1981) Sofiware Engineering Economics, Prentice-Hall' Englewood

Clitrs, NJ.
2. Booch, G. (1994) Object-oriented Analysis andDesign, Benjamin / Cummings.

3. Chen, P.P. (1976) The Entity-Relationship Model ' Toward a Unified View of Data,

ACM Transactions on Database Slstetflr, I (l).

178



4. Chidamber, S. & Kemerer, C. (lgg4)A mehic suite for object_oriented design, IEEE
Transactions Sortware Engineering, 20(6).

5' coad' P. & Yourdon, E. (1991) object-oiented Design,prentice Hall, Englewood
Cliffs, NJ.

6. Codd, E. (1970) Relational Data Model, Communications of the ACM,13(6).
Coleman, D., Arnold, p., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F. & Jeremaes,
7 . P. (1994) object-oriented Development: The Fusion Method,'prentice-Hall,
Englewood Cliffs, NJ.

8. Davies, C., Curtis, A., D9ake, J. &Lazelt,B. (1996) Object Oriented Design and
Maintainable Code: a Relational perspective, proceedings o;f 4th ECIS conyirenre,
Lisbon, pp659-672.

9. Davis, A. (1993) Software kmmingineeing, IEEE Software l0,pp79_g4.
10. De Marco, T. (1932) Controlling Sortware projects,yourdon press, New york.
11. Dreger, J.B. (1989) Function point Analysis,prentice-Hall, Englewood cliffs, NJ.
12. Fenton, N.E. & pfleeger, S.L. (1996) Software Metrics, A rigorous and practical
appro ach, Thomson, I-ondon.

13. Haythom,W . (1994) What is object_oriented ? , Joumal of Object Oriented
Programming, March-April, pp67 -7g.
14. Henderson-Sellers, B. (1996) Object-oriented metrics: measures of compleity,
Prentice Hall, Englewood Cliffs, NJ.

15. 
Henry' s. and Kafura, D. (r9gr) software structure metrics based on i'formation

flow, I E EE T ransactio ns S oftw are En gine e ring, 7(5), pp5 1 0-5 I g.

16' Jacobson, L (1993) object-oriented sofware Engineering - A (Jse case DrivenApproach, ACM press.

I:-Y"I"" B' (198s) object-oriented software co,rstruction,prentice-Hail, Englewood
Cliffs, NJ.

18. Rumbaugh, J., Blaha, M., premerlani, W., Eddy, F. & Lorensen, W. (1991) Object_Oriented Modelling and Design, prentice_Hall, enjtewooO Cliffs, NJ.
19. shepperd, M.J. and Ince, D.c., (1990) The use of metrics in the early detection of
design errors, Proceedings of the European sofrware Engineering con\irence,ppoz-as.
20. Shepperd, M.J. and Ince, D.C., (1993) D eivation and Validarion of Software
Metrics, Clarendon press, Oxford.
21. ssADM (1992) ssADM version 4 reference manuals, NCC Brackwell Lrd.
22' shlaer, s.' Mellor, s.J. (r98t) object-oriented systems Anarysis: Modering rhe
World in Data, Prentice Hall, Englewood Cliffs, NJ.
23. Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990) Designing Object_Oriented
Software, Prentice-Hall, Englewood Ctiffs, NJ.
z' Yourdon, E. & Argila, c. (1996) case studies in object oiented Anarysis and
Design, Yowdon Press, New york.

179


