The effectiveness of testing models

Janis Bicevskis

University of Latvia
Rainis Blvd. 19, Riga LV-1459, Latvia
e-mail: bics@lanet.lv

This paper presents analysis of statistics concerning concrele. object-oriented
program system testing procedures. with the goal of evaluating the effectiveness of
various testing technologics. Specific testing models are presented as an alternative
to traditional models: data basc management. system object management, user
interface. and calculation checking,  The results of different kinds of tests are
compared: in onc case they are tests which are performed “intuitively”. i.c.. without
a concrete testing scenario: and in the other casc they are tests which are performed
systematically. i.c.. according to previously fixed testing models. The statistics
clearly prove the advantages of systematic testing. and they suggest various
proposals on improving the testing models

1. History

The traditional approach to the testing of program systems has involved the
following scheme: The programmer chooses the values of input data — tests on which
the program is executed. The programmer estimates the correctness of the program
on the basis of the operational results. By repeatedly choosing different tests and
controlling the results, the programmer can ensure the correctness of the program.
I'he essence of the problem lies in choosing a series of tests which:

e Discover errors properly (ie., which allow the researcher to spot
weaknesses in the system with just a few tests, pointing out the places where
the system does not meet specifications, if any);

e Involve criteria that report on the adequacy of testing when all errors are
discovered at a high level of trust.

Over the course of time, various methods have been offered to solve this
problem. One of the first criteria to be developed was called C1, and all feasible
branches of a program can be executed on this test set. This, as well as another
structural criterion [Beiz 95], in which information about the structure of the program
or its data are utilized, are usually used for the testing of individual modules. Ideas
about structural testing which have been worked out by theoretical researchers have
been applied in practice since the early 1990s. Most of the tools which are used for
this purpose allow for the automated establishment of a control flow graph from the

157



text of the program and thus to check the completeness of the testing procedure —
whether all branches on the graph have been covered. Unfortunately, these structural
methods face significant difficulties in testing object-oriented systems:

e The structural methods usually utilize information from the text of the
program, which characterizes the implementation of the task and is not
essential from the perspective of the task itself:

e Structural testing methods are laborious and may not be appropriate for
many situations; ;

o Structural methods are oriented toward the testing of individual modules,
while in an object-oriented system it is much more important to test the
cooperation among class methods ([Over 95]).

It should be added that as far back as the early 1980s there were some methods
which were based on more sensitive testing criteria — i.e., testing not only by
performing all edges of the control flow graph, but performing them from various
. states of the program ([Bic 79]), where “state” is understood to be the minimal
information which determines the further execution of the program. Because they are
quite complicated, these criteria were not widely used.

A radically different approach has been taken to functional testing, when the
functions of the system that is being developed are checked without use of information
about the structure of the program. This approach mirrors what is needed in practice,
because the testing can be done without the presence of developers and in accordance
with the specification of the program system or the user guide.

Functional testing is well-supported by the tools of testing automation, which
allow for the accumulation and repetition of tests. The majority of testing support
tools which have been developed contain various features such as:

e An accumulation of tests, both through writing test scripts and through

executing programs and recording user input;

e Repeated execution of updated programs through the use of tests
accumulated in libraries;

e Forming of testing models from the text of the program or its specifications;

e Checking the completeness of the test on the basis of previously determined
testing models.

Practice shows that the methods of structu-al testing are good for the testing of
modules, while the methods of functional testing are appropriate when it comes to
module integration and the acceptance testing stage. The comparison [Beiz 97] offers
the use of structural and functional testing methods, pointing out that structural
methods are used in 80% of cases involving module testing, while functional methods
are used in up to 80% of cases involving acceptance testing. It must be said, however,
that in the theory of testing, one fundamental question about the choice of testing
criteria has not yet been answered.

It is the contention of this paper that it is impossible to use one universal testing
criterion to check different components of a system. The developed system must be
tested in the basis of the appropriate type of qualities: the correctness of the data base,
response of user interface to appropriate requirements, correctness of object
processing and calculations, etc. Besides, it is not only all of the possible operations of
the object that must be tested, but also all of the operational pairs. This principle is
supported by considerations which have already been reviewed [Auz 91]: If an
operation is applied to an object only once, the object without any question enters a

158



new “state”. This means that it is necessary to apply the operation repeatedly to the
same object and from the new “status”, hoping that the repeated application of the
operation will not create new conditions. For example, when the editing window of a
concrete object is opened, the system enters a new status, but if a second editing
window is opened in the same object (provided that the system permits this), no new
status is created. This principle has been tested through functional testing of a specific,
fairly complicated system.

On the basis of the specifications of the system that wis being developed,
several testing models were chosen, in concert with which the programs were tested
within the group which did the developing. The selected testing models allowed for a
test of only some of the system’s functions, albeit those which the project managers
thought were the most important ones. The testing of the rest of the system functions
was done by the programmers, and they did not use testing models. The tested
programs were later turned over for independent repeat testing by a quality control
group and by system users. The repeated testing showed that:

‘e The discovered errors mostly apglied to those system functions which were
tested by programmers without testing models, and this affirms the need for
systematic testing instead of intuitive testing;

* Testing done according to the “depth 2 principle was, at least in this case,
sufficient to reveal errors properly.

This means that the main result of the project was the accumulation of

experience in the testing of object-oriented program systems with specific testing
models.

2. A brief description of the system that was tested

The effectiveness of the testing models was reviewed on the basis of statistics
about a specific system — Mosaik 5.0. This is a static calculation system with which
information is stored about the various elements and costs involved in a major project.
Users of the system enter the various parts of a large project, along with numerical
calculations about their duration, costs, participants, etc. Graphs are designed to show
the sequence of tasks that are to be performed, providing alternative ways of doing the
job (OR branching), or parallel constructions for carrying out the tasks (AND
branching). The system allows users to calculate various versions of the project
execution which differ in terms of the sequence of tasks and in terms of the numerical
assessments of the tasks. The system, depending on the stated goal, can work with the
tollowing objects: the project, the type of task, the tasks, the characteristics of the
tasks (duration, costs, etc.), the value of the characteristics, the type of calculation. etc.
Project objects are stored in a relational data base (repository).

The testing of the developed programs was divided into two parts — testing of
the complex components and testing of the simple ones. The complex components
were the following:

o Capture of projects in the data base (including the establishment of the data

base, entry of project objects, and reading from the data base);

¢ Object management, including such standard operations as the addition of

new object types and objects to the project, as well as updating or deleting
of objects from the project;

159



e Cooperation among windows, which includes information exchange among

windows that are open simultaneously;,

o Correctness of calculations.

Other components of the system, such as depiction of the project in graph form
and the operations of individual window elements, were seen as simpler, and special
testing models were not elaborated for their testing.

In other words, in place of a universal testing criterion such as C1, functional
testing of the system was performed in concert with sevesal specific criteria. What’s
more, systematic testing was carried out at various stages of development.

3. Organization of the testing

The programs were tested in several stages, collecting statistics about the
errors that were discovered, about authors, etc. The following main stages of testing
where elaborated (see Figure 1).

Test laboratory Beta-testing

Developer’s team

NI
H

324

210

Figure 1. Organization of the testing

1) Autonomous testing of modules done by the developer of the module.
Some programmers tested their modules systematically on the basis of previously fixed -
test models, whil - others did the work intuitively. Because autonomous testing was
individual work, statistics were not collected on the errors that were discovered in this
stage of the process.

2) Testing within the software development team. The programmers tested
their own modules, as well as those of their colleagues, noting all discovered errors in
a log. The log served as a means of communication among programmers, but it did
not, as far as possible, affect the salaries, work status, etc., of the programmers. 324
reports were logged.

160



3) Testing within the quality control group of the company. Before each new
version of the system was turned over to the client, the company’s quality control
group tested it. The work was done by an independent tester. Error reports were
prepared for each discovered error, and these were turned over to the developers of
the programs. The independent tester did not know the internal architecture of the
system and conducted functional testing. The quality control group made 210 reports
which, like those in the earlier stage, allowed for an analysis of the nature of the errors
that were discovered. 1t should be noted in particular that the statistics testify to a
surprisingly large volume of errors which were noted by the developers during their
testing stage, but which were also found later by the independent tester. This may be
because of the time frame for the overall process, which meant that programmers were
not able to repair all known errors on time.

4) Testing by the client’s company. The client noted the defects discovered by
system users (beta testing) and did an independent test to review the operations of the
system as a whole. All errors and inadequacies were fixed in requests for changes
which were sent to the developer. The company filed 149 reports. Statistics show that
the greatest number of undiscovered errors were found by users and by the client
precisely in those modules which were not tested systematically. In those modules
which were tested on the basis of specific criteria and testing models, there were few
errors discovered later.

4. Statistics about errors

The summary of statistics, which is reflected in the following table, included 10
tvpes of errors:

Developer group Quality control Client

I No. % No. % No. %
Project capture in the data basc 30 9% 10 5% 15 10%
Object management in the project 98 30% 28 13% 13 9%
Cooperation among windows A% 17% 28 13% 5 3%
Correctness of calculations 7 2% 1 1% 3 2%
Project reflection in a graph 11 3% 58 28% 13 9%
User interface 51 16% 32 15% 25 17%
Correctness of report lexts 34 1% 21 10% 20 13%
Other defects 35 11% 19 9% 16 11%
User recommendations 4 1% 10 5% 25 17%
Unjustified complaints | 0% 3 1% 14 9%
Total 324 100% 210 100% 149 100%

I. Capture of projects in the data base. This group included errors in the
opening of new data bases, the creation of new projects, changes in the format in
existing projects, and deletion of projects. According to statistics, the percent share of

161




these errors in all phases of testing remained virtually unchanged, which can be
explained through changes in the specifications of the task.

2. Object management in the project. ‘The objects of the Mosaik 5.0 project
were characterized by the fact that more than 16 types of objects were specified, and
each type of object could freely be changed by the user through an addition of new
attributes (fields) or by an updating of existing attributes. The project permitted many
identical objects which reflect the tasks that are to be performed and which are
characterized by attribute values. The individual objects are linked by performance
sequence relations. According to statistics, the percent share of these errors declined
in later testing phases. This is because systematic tests were implemented after a large
number of errors was discovered in the first testing phase.

3. Cooperation among windows. In the Mosaik 5.0 project, the depiction of
project objects is particularly complicated, because the same object can be displayed in
several windows and in several formats. The system must be able to display objects
correctly in several windows after they are changed in one window. Additional
difficulty is caused by the fact that changes in the object type lead to changes in the
object image in other windows. As was the case with the previous instance, the
percent share of errors declined in later testing phases because of systematic testing
after the first testing phase.

4. Correctness of calculations. In this group those errors were included which
led to erroneous calculation results. It should be noted that Mosaik 5.0 is meant for
the calculation of various versions of a project’s costs, duration, material resource
necessity, and other aspects, basing the calculations of the sequence and parallel extent
of the tasks that are to be performed. The correctness of the calculations was tested
by the programmer with tests that were prepared on the basis of a previously chosen
testing model. The statistics show that the check of the correctness of calculations was
tested at the best level, even though this is one of the most complicated parts of
Mosaik 5.0.

5. Project reflection in a graph. In Mosaik 5.0, the sequence of tasks to be
performed is displayed in the form of a graph. Fairly complicated operations can be
done with the graph: sub-graphs can be separated from the overall graph, sections of
the graph could be collapsed into one vertex, one vertex could be replaced with a sub-
graphs, etc. Systematic testing was not done on the basis of a chosen model.
Statistics show that the programmer was not himself able to test the complicate
algorithms, and independent testing did not provide the desired results either.
Apparently this component of the system needed systematic testing.

6. User interface. This group included errors that were seemingly easy to
discover — insufficient review of data entry, defects in the appearance of the display
screen, improper cursor movements, etc. Systematic testing was not done. The
statistics show that there was an unexpectedly large number of errors.

7. Correctness of report texts. Changes in textual information caused by
spelling or pronunciation errors in the texts were registered separately. Statistics show
that there was an unexpectedly large number of errors in this category throughout the
testing process.

8. Other defects. This group included errors not covered by the previous
groups. The number of such errors was relatively low, and this allows us to conclude
that most system errors fell into one of the previous seven groups.

162



9. User recommendations. This group included proposals on changes in the
operations of the system vis-a-vis the initial specifications. Naturally these proposals
were made mostly by the system users.

10. Unjustified complaints. This group includes reports on errors which were
caused by user misunderstanding or carelessness.

Given the significance of the choice of testing models in systematic testing, the
paper will now turn to a simplified description of the testing models that were applied.

S. The testing models

The functionality of the system was tested on the basis of the system
specification. Some of the requirements were tested on the basis of the common sense
and responsibility of the programmers, but in the case of other functions, specific
testing models were developed:

® A model for testing the correctness of data base management;

* A model for testing the correctness of object management;

¢ A model for testing cooperation among windows;

¢ A model for testing calculations.

The four models secured the testing of the most complicated aspects of the
developed system, at least according to the views of the development project
management team; other elements were seen as being easier to test. As we see in
statistics about the errors that were discovered, in those components which were
tested in accordance to testing models, later testing phases revealed fewer errors than
was the case in other components.

Next we will take a simplified look at the models which were used in the
practical testing procedure.

S.1  The data base management testing model

The data base management testing model was used to review the ability of
Mosaik 5.0 to open a new data base in one of two formats-

® In the first format Mosaik 5.0 projects were saved in separate files with a

specific inner structure which allowed for the rapid opening and saving of
projects;

® In the second format, Mosaik 5.0 projects were saved in a relational data

base, which allowed access to specific project objects through SQL
commands. Unfortunately, this did not allow for the rapid opening and
saving of projects.

Irrespective of the format that was applied, several projects had to be kept in
the data base, and there had to be opportunities to-establish new projects, to update,
delete and read projects, to save them in various formats, to transfer from one format
to another, etc. The state transitions diagram used in the construction of the formal
testing model is shown in Figure 2, where the vertices of the graph characterize the
possible states of the data base: uninitiated, in format one or in format 2. The
branches of the graph characterize operations with the data base objects, ie., the

163



projects. Operations with data base objects were tested in depth 2, which means that
during the test, the data base was first initialized, then a format was chosen, and then a
project was entered into the data base, edited, deleted, saved, or read from the data
base with a transfer from one format to the other. The test was considered sufficient
when all operation couples were tested. It should be added that the correctness of
changes in the project objects was tested with another model, which is reviewed in the
next section of this paper.

Because tools of test capture and repeated usage were not used, the testing of
the data base required a lot of time, as a result of which the testing was not always
conducted in full. Secondly, this testing model was developed by the programmer
group and applied only after many errors had already been revealed in further testing
phases. Therefore, the statistics do not truly reflect the effectiveness of the testing
model: rather, what are shown are the consequences of failure to use the testing model.
It is only after the implementation of the systematic testing procedure in the
development group that the number of errors revealed in further testing phases
declined significantly.

/ \
Initialize Initialize
save 1. format 2. format save

new change new
delete format delete

Figure 2. Data base management testing model

5.2 The project object management testing model

Mosaik 5.0 project objects include many types of objects, where every type can
be changed freely by the user — adding new attributes (fields) or changing existing
ones. Many single-type objects can be used in the project, and they basically have to
reflect the tasks that are to be done and they must be characterized by values of their
attributes. Separate objects are mutually connected through sequence relations.

The testit g of project object management includes a check of the correctness
of object types, as well as of changes in the value of object attributes. The testing
model is depicted in Figure 3, where the vertices of the graph who one type of the
object and objects corresponding to it, while the branches represent operations with
object types and objects. During the test, operations with object types and the
corresponding objects were tested at depth 2. That means that the testing was
considered to be sufficient when type changes were checked along with the
correspondence of changes in corresponding objects to all possible operation couples.

164



As was the case in the data base testing, the object management test also did not use
tools for test capture and retrieval. This meant that much time was needed, and the
testing model was developed and applied by the programmer group only after
problems had been encountered in the testing of object management. As was the case
previously, after the implementation of systematic testing in the development group,
the number of errors discovered in further phases declined significantly.

Change

type
view

New,
delete Change
attribute attribute

Figure 3. The project object management testing model

5.3  The model for testing of window cooperation

In the Mosaik 5.0 project, the depiction of project objects is particularly
complicated, because one and the same object can be displayed in several windows and
in several formats. As a result of this, the programmers developed a window
cooperation testing model, which is illustrated in Figure 4. The vertices of the graph
represent the windows which are open during the operations of the system, while the
branches represent opera.:ons with the windows.

‘Project WND:

* Open/Close -
Ty\pcWND

. Open/Close |
Value WND Yol WD ¢

Figure 4. The model for testing of window cooperation

165



The testing of window cooperation involves the opening and closing of many
copies of a single type of window, as well as a check of the correctness of transfers
among windows of various types. The test was considered to be complete when
cooperation between two copies of all types of windows had been tested.

Statistics affirm that the timely elaboration of a model and the implementation
of systematic testing in the development group significantly reduced the number of
errors that were discovered in the last phase of the testing.

5.4 The model for testing of calculations

The test of the correctness of calculations was performed as follows: Several
projects were elaborated in the Mosaik 5.0 system where each project served as the
basis for one set of tests. In order to check the correctness of the operation of the
developed programs, calculations with different options and object values were

* executed, and the results were compared to standard values as calculated by the tester.
This well-known method for checking calculations proved to be most effective. After
the tests were drafted and the standard values were calculated, the test itself took little
time (meaning the execution of the program and a comparison of the result to the
standard values). The test was easy to repeat, and it was very sensitive to program
errors. The testing model is represented in Figure 5, where the vertices of the graph
show the constructions which are permitted in the project graph: linear branch, OR
construction, AND construction, and segment. The branches show their applicability
in the corresponding constructions. The tests were elaborated so that they would
include all possible combinations of constructions at depth 2 (meaning 12 in total).
This means that a test was developed in which the linear branch included the OR
construction, the AND construction, and a segment, where each of the constructions
for its part included a linear branch, an OR construction, an AND construction and a
segment, etc.

 Include ; | Include | Include |

( lORoonstruction ) : Include | "(| AND construction )

+ Include |  Include , U Include |

N

Figure 5. The model for testing of calculations

The model for testing of calculations proved to be so sensitive toward errors in
the program that after the development of the calculation testing project, only a few
insignificant errors were found in the next testing phases.

166



6. Main conclusions

Even though the statistics collected from the testing of one specific system do
not allow us to draw generalized conclusions, the following can be said safely:

Systematic testing has distinct advantages over intuitive testing;

The functional testing of specific systems must use testing models which are
appropriate for the specific instance and which are set out by the
specifications of the system that is being developed;

Testing on the principle of “depth 2” was, at least in the testing o! this
system, sufficient to reveal errors properly;

This paper provides a brief look at models for testing of data base
management, object management, user interface and calculation testing, and
these are typical for the testing of many different kinds of systems.

References

[Beiz 95]

[Over 95]

[Bic 79]

[Auz 91]

[Beiz 97]

Boris Beizer. Black-Box Testing Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, Inc, USA, 1995, 294 pp.

Jan Overbeck. Testing Object-Oriented Software and Reusability -
Contradiction or Key to Success. Conference Proceedings, Eighth
International Software Quality Week 1995, Software Research Institute,
USA, 1995,

J Bicevskis, J.Borzovs, U.Straujums, A Zarins, and E.F Miller. SMOTL- a
system to construct samples for data processing program debugging. /EEE
Transactions on Software Iingineering, SE-5, No. 1,1979,pp.60-66.

A Auzins, ). Barzdins, J Bicevskis, K.Cerans, A Kalnins. Automatic
construction of test sets: a theoretical approach. Lecture Notes in

Computer Science. Vol. 502, Springer - Verlag, 1991.

B.Beizer An overview of testing. Quality Week Europe 1997. Tutorial
Notes. Software Research Institute, USA, 1997.

167



