
The effectiveness of testing models

Janis Bicevskis

University of Latvia
Rainis Blvd t 9, Riga LV- 1459, Latvia

e-mail: bics@lanet.lv

Tltis pap"r prcscnts arralrsis of slalistics conccrning concrclc. objcct-oriented
prograill s\slcnl tcsting proccdurcs- *ith thc goal ofevaluating the effectiveness of
\ilrioLls tcsrin!! tcchnologics. spccirlc tcsting modcls arc prcs"nted as an altcrnative
lo trrditionrl t'odcls: dala basc ntanilgcmcnl. s'stcm object nranagcment. us€r
inlcrfircc- ard calculiltio. chccking. The rcsuhs of diffcrent kinds of tests are
cornprrcd: irr onc cilsc thc\ arc lcsls \hich arc pcrformcd "intuitivcly... i.c.. withoul
:r concrcle tcsling sccnario: and in llrc othcr casc lhq lrc tcsts which are perfomed
s\stcnlitlicillh. i.c. irccording lo prcriorrsll fircd tcsting modcls. The statistics
clcirrlr prorc tllc:td\tillagcs of s\slctnatic lcsling. and thcy suggest various
proposals on inrpror irrg thc tesling rnodcls

l. History

The traditional approach t. the testing of program systems has involved the
lirllowing scheme: -fhe programmer chooses the valuei of input data - tests on which
thc program is execuled. The programmer estimates the coirectness ofthe program.r lhe basis ol the operatio.al results. By repeatedly choosing different tests'and
corrtrolli'g the results, the programmer can ensure the correctness of the program.
I hc essence ofthe problern lies in choosing a series oftests which:

o Disc.ver errors properly (i e., which allow the researcher to spot
weaknesses in lhe svstenl wirhjust a fbw tests, pointing out the places where
the systeln does not meet specifications, ifany);

r Involve crileria that reporr on the adequacy of testing when ail errors are
discovered at a high level oltrust.

over the course of time, various methods have been offered to solve thispr.lrlem. one ol the tirst criteria to be developed was called cl, and all feasible
lrranches ol a progranr can be executed on this test set. This, as well as another
slnrctural crirerion [Beiz 95], in which information about the structure of the program.r its data are utilized, are usually used for the testing of individuat modules. iiea,
abo.t structural testing which have been worked out by theoretical researchers have
been applied in practice since the early 1990s. Most oithe tools which are used for
this purpose allow for the automated establishment ofa control flow graph from the

157

text of the program and thus to check the completeness of the testing procedure -
whether all branches on the graph have been covered. unfortunately, these structural
rnethods face significant difficulties in testing object-oriented systems:

o The structural methods usually utilize information from the text of the
program, which characterizes the implementation of the task and is not
essential from the perspective ofthe task itself;

r Structural testing methods are laborious and may not be appropriate for
many situations;

o Structural methods are oriented toward the testing of individual modules,
while in an object-oriented system it is much more important to test the
cooperation among class methods ([Over 95]).

It should be added that as far back as the early 1980s there were some methods
which were based on more sensitive testing criteria - i.e., testing not only by
performing all edges of the control flow graph, but performing them from various

. states of the program ([Bic 79]), where "state" is understood to be the minimal
intbrmation which determines the further execution of the program. Because they are
quite complicated, these criteria were not widely used.

A radically different approach has been taken to functional testing, when the
functions ofthe system that is being developed are checked without use ofinformation
about the structure ofthe program. This approach mirrors what is needed in practice,
because the testing can be done without the presence ofdevelopers and in accordance
with the specification ofthe program system or the user guide.

Functional testing is well-supported by the tools oftesting automation, which
allow for the accumulation and repetition of tests. The majority of testing support
tools which have been developed contain various features such as:

o An accumulation of tests, both through writing test scripts and through
executing programs and recording user input;

o Repeated execution of updated programs through the use of tests
accumulated in libraries;

r Forming oftesting models from the text ofthe program or its specifications,
r Checking the completeness ofthe test on the basis ofpreviously determined

testing models.
Practice shows that the methods ofstructu.'al testing are good for the testing of

modules, while the methods of functional testing are appropriate when it comes to
module integration and the acceptance testing stage. The comparison [Beiz 97] offers
the use of structural and functional testing methods, pointing out that structural
methods are used in 800/o of cases involving module testing, while functional methods
are used in up to 807o of cases involving acceptance testing. It must be said, howeveq
that in the theory of testing, one fundamental question about the choice of testing
criteria has not yet been answered.

It is the contention ofthis paper that it is impossible to use one universal testing
criterion to check different components of a system. The developed system must be
tested in the basis of the appropriate type of qualities: the correctness of the data base,
response of user interface to appropriate requirements, correctness of object
piocessing and calculations, etc. Besides, it is not only all of the possible operations of
the object that must be tested, but also all ofthe operational pairs. This principle is
supported by considerations which have already been reviewed [Auz 9l]: If an
operation is applied to an object only once, the object without any question enters a

158

new "state". This means that it is necessary to apply the operation repeatedly to the
sarne object and from the new "status", hoping ihai the repeated apilication of the
operation will not create new conditions. For example, when the editing window of a
concrete object is opened, the system enters a new status, but if a second editing
r'vindow is opened in the same object (provided that the system permits this), no new
status is created. This principle has been tested through functionai testing of a specific,
fbirly complicated system.

on the basis of the specifications of the system that wds being deveroped,
several testing models were chosen, in concert with which the programs"were tested
within the group which did the developing. The selected testing molels ailowed for a
test of only some of the system's functions, arbeit those which the project managers
thought were the most important ones. The testing ofthe rest ofthe system functions
was done by the programmers, and they did noi us" testing modeis. The tested
programs were later turned over for independent repeat testing by a quality control
group and by system users. The repeated testing showed that:'o The discovered errors mostly applied to those system functions which were

tested by programmers without testing models, and this affirms the need for
systematic testing instead of intuitive testing;

o Testing done according to the "depth 2" principle was, at least in this case.
sufficient to reveal errors properly.

This means that the main result of
experience in the testing of object-oriented
models.

the project was the accumulation of
program systems with specific testing

2. A brief description of the system that was tested

The effectiveness ofthe testing models was reviewed on the basis ofstatistics
about a specific system - Mosaik 5.0. This is a static calculat;on system with which
inibrmation is stored about the various erements and costs invorved in a major project.
ljsers of the system enter the various parts of a large project, arong with num#cal
calculations about their duration, costs, participants, eic.

-

Giaphs are Jesigned to show
the sequence oftasks that are to be performed, providing arteinative ways ofdoing thejob (OR branching), or parallel constructioni for carrying out the tasks 1,ifVObranching) The system allows users to carculate various versions of the project
execution which differ in terms of the sequence of tasks and in terms of the numerical
assessments ofthe tasks. The system, depending on the stated goal, can work with the
fbllowing objects: the project, the type of task, the tasks, thi characteristics of the
lasks (duration, costs, etc.), the value ofthe characteristics, the type ofcalculation_ etc.
Project objects are stored in a relational data base (repository).

. The testing ofthe developed programs was dividedlnto two parts - testing of
the complex components and testing of the simpre ones. The

"o,,pl"* "ornponlnt,were the following:
o capture ofprojects in the data base (incruding the establishment ofthe data

base, entry ofproject objects, and reading from the datr base);r object management, including such standard operations as the addition of
new object types and objects to the project, as well as updating or deleting
ofobjects from the project;

159

e Cooperation among windows, which includes information exchange among
windows that are open simultaneously;

o Correctness ofcalculations.
Other components ofthe system, such as depiction ofthe project in graph form

and the operations of individual window elements, were seen as simpler, and special
testing models were not elaborated for their testing.

In other words, in place of a universal testing criterion such as Cl, functional
testing of the system was performed in concert with several specific criteria. What's
rnore, systematic testing was carried out at various stages ofdevelopment.

3. Organization of the testing

The programs were tested in several stages, collecting statistics about the
errors that were discovered, about authors, etc. The following main stages oftesting
rvhere elaborated (see Figure I).

ffikH E Y"'ffiF*+
WH ffiJG

itlg,i I r' '' '.-l Eli*w -v.tf

ffi'8ffi
Figure .l . Organizatbn of the testing

I) Autonomous testing of modules done by the developer of the module.
Sorre programmers tested their modules systematically on the basis of previously fixed
lest models, whil others did the work intuitively. Because autonomous testing was
individual work, statistics were not collected on the errors that were discovered in this
sta-!r,e of the process.

2) Testing within the software development team. The programmers tested
lhcir own modules, as well as those oftheir colleagues, noting all discovered errors in
ir log. The log served as a means of communication among programmers, but it did
not. as fbr as possible, affect the salaries, work status, etc., of the programmers. 324
leports were logged.

f g.t,*.'.rEl

tTt-ttt_l

ffi

E

ffi
@@

3) Testing within the quality control group ofthe company. Before each new
version of the system was turned over to the client, the company's quality control
group tested it. The work was done by an independent tester. Eror reports were
prepared for each discovered error, and these were turned over to the developers of
the programs. The independent tester did not know the internal architecture ofthe
svstem and conducted functional testing. The quality control group made 210 reports
which, like those in the earlier stage, allowed for an analysis ofthe nature ofthe errors
that were discovered. It should be noted in particular that t[e statistics testi& to a
surprisingly large volume of errors which were noted by the developers during their
testing stage, but which were also found later by the independent tester. This may be
because of the time frame for the overall process, which meant that programmers were
n()t able to repair all known errors on time.

4) Testing by the client's company. The client noted the defects discovered by
svstem users (beta testing) and did an independent test to review the operations ofthe
system as a whole. All errors and inadequacies were fixed in requests for changes
which were sent to the developer. The company filed 149 reports. Statistics show that
the greatest number of undiscovered errors were fbund by users and by the client
precisely in those modules which were not tested systematically. In those modules
rrhich were tested on the basis ofspecific criteria and testing models, there were few
cr r or s discovered later.

4. Statistics about errors

The summary of statistics, which is retlected in the following table, included l0
rl'errors.

I Capture of projects in the data base. This group included errors in the
opening of new data bases, the creation of new projects, changes in the format in
existing projects, and deletion ofprojects. According to statistics, the percent share of

Do clopcr group Qualitv control CIicnl

No No No

l)roicet cirpturc in lllc ditlr bilsc 91 lo 501, l5 lOVo

()blccl nurlagcnlcnl iil lhc proiect 98 3l}n 28 t70/" l3 gYo

(oopcratiorr lrnrong rr ildols ii 11,'t 2{J l3olt 5 3Vo

(irrruclilcss ol' crlcrlllioos 7 lYo 2Yo

I)roicct rcfleclion in t graplr ll 1t't 5E 28olt l3 9Yo

(lscr i|ltcrlitcc 5t l(ft 32 1501, 25 lTyo

(Orrcclness o[rcporl lC\ls I I lt'/" 2l llyo 20 l3yo
()thcr dcfccts 35 Iy" l9 9Yo t6 ll%o

I Jrcr rcconlmcnd{liots + lt'/o l0 50/" 25 lTyo

l.lniuslillcd conlplainls I l\ol, lo/" l4 9Yo

Total l2{ 100% 210 l00yo t49 l00o/o

these errors in all phases of testing remained virtually unchanged, which can be
explained through changes in the specifications ofthe task.

2. Object management in the project. ,The objects of the Mosaik 5.0 project
were characterized by the fact that more than 16 types ofobjects were specified, and
each type of object could freely be changed by the user through an addition of new
attributes (fields) or by an updating ofexisting attributes. The project permitted many
identical objects which reflect the tasks that are to be performed and which are
characterized by attribute values. The individual objects ire linked by performance
sequence relations. According to statistics, the percent share ofthese errors declined
in later testing phases. This is because systematic tests were implemented after a large
number oferrors was discovered in the first testing phase.

3. Cooperation among windows. In the Mosaik 5.0 project, the depiction of
project objects is particularly complicated, because the same object can be displayed in
several windows and in several formats. The system must be able to display objects
porrectly in several windows after they are changed in one window Additional
difTiculty is caused by the fact that changes in the object type lead to changes in the
object image in other windows. As was the case with the previous instance, the
percent share of errors declined in later testing phases because of systematic testing
afler the first testing phase

4. Correctness ofcalculations. In this group those errors were included which
led to erroneous calculation results. It should be noted that Mosaik 5.0 is meant for
the calculation of various versions of a project's costs, duration, material resource
necessity, and other aspects, basing the calculations ofthe sequence and parallel extent
olthe tasks that are to be performed. The correctness ofthe calculations was tested
by the programmer with tests that were prepared on the basis of a previously chosen
testing model. The statistics show that the check ofthe correctness ofcalculations was
tested at the best level, even though this is one of the most complicated parts of
Mosaik 5.0.

5. Project reflection in a graph. In Mosaik 5.0, the sequence of tasks to be
performed is displayed in the form of a graph. Fairly complicated operations can be
done with the graph: sub-graphs can be separated from the overall graph, sections of
the graph could be collapsed into one vertex, one vertex could be replaced with a sub-
graphs, etc. Systematic testing was not done on the basis of a chosen model.
Statistics show that the programmer was not himself able to test the complicate
algorithms, and independent testing did not provide the desired results either.
Apparently this component ofthe system needed systematic testing.

6. User interface. This group included errors that were seemingly easy to
discover - insufficient review of data entry, defects in the appearance of the display
screen, improper cursor movements, etc. Systematic testing was not done. The
statistics show that there was an unexpectedly large number oferrors.

7. Correctness of report texts. Changes in textual information caused by
spelling or pronunciation errors in the texts were registered separately. Statistics show
that there was an unexpectedly large number oferrors in this category throughout the
testing process.

8. Other defects. This group included errors not covered by the previous
groups. The number of such errors was relatively low, and this allows us to conclude
that most system errors fell into one ofthe previous seven groups.

162

9. User recommendations. This group included proposals on changes in theoperations ofthe system vis-a-vis the initiar siecifications. Naturaily these"p.oposals
were made mostly by the system users.

. .l0 Unjustified complaints. This group includes reports on errors which were
caused by user misunderstanding or careleisness.

Given the significance..of the choice of testing models in systematic testing, the
paper will now turn to a simplified description of thelesting model that ,"r. upfTi"J.

5. The testing models

.- The functionality of the system was tested on the basis of the system
specification. Some ofthe requirements were tested on the basis ofthe common sense
and. responsibility of the programmers, but in the case of other functions, ,p..in.
testing models were developed:

o A model for testing the correctness ofdata base management;
o A model for testing the correctness ofobject management;
o A model for testing cooperation among windows;
o A model for testing calculations.
The four moders secured the testing of the most complicated aspects of the

developed system' at least according to the views of the deveropment project
management team; other elements were seen as being easier to test. As *"'raa in
statistics about the errors that were discovered, in lhose components which were
tested in accordance to testing models, later testing phases revealed fewer errors than
was the case in other components.

Next we will take a simplified took at the moders which were used in the
practical testing procedure.

The data base management testing moder was used to review the ability of
Mosaik 5.0 to open a new data base in onJof two formats:

r ln the first format Mosaik 5.0 projects were saved in separate files with a
specific inner structure which ailowed for the rapid op"ning and saving of
projects;

o In the second format, Mosaik 5.0 projects were saved in a relational data
base, which allowed access to specific project objects througn Sqf_
commands. Unfortunately, this did not allow for the rapid op"i'ing uid
saving ofprojects.

Irrespective of the format that was applied, several projects had to be kept in
the data base, and there had to be opportunities to estabrish new projects, ,o ufaut",
delete and read projects, to save them in various formats, to transfer from one format
to another, etc. The state transitions diagram used in the construction of the formal
testing model is shown in Figure 2, wheie the vertices ofthe graph characterize thepossible states of the data base: uninitiated, in format one or in format 2. The
branches of the graph characterize operations with the data base objects, i.e., the

t63

projects. Operations with data base objects were tested in depth 2, which means that

during the test, the data base was first initialized, then a format was chosen, and then a

project was entered into the data base, edited, deleted, saved, or read from the data

base with a transfer from one format to the other. The test was considered sufficient

when all operation couples were tested. It should be added that the correctness of
changes in the project objects was tested with another model, which is reviewed in the

r)e\l section ofthis PaPer.
Because tools oftest capture and repeated usage wEre not used, the testing of

the data base required a lot of time, as a result of which the testing was not always

conducted in full. Secondly, this testing model was developed by the programmer

group and applied only after many errors had already been revealed in further testing

phases. Therefore, the statistics do not truly reflect the effectiveness of the testing

ntoclel. rather, what afe shown are the consequences offailure to use the testing model.

It is only after the implementation of the systematic testing procedure in the

clevelopment group that the number of errors revealed in f'urther testing phases

declined significantly.

Figure 2. Data bose n anugement lesting model

5.2 The project obiect management testins rnodel

Mosaik 5.0 project objects include many types ofobjects' where every type can

be changed freely by the user - adding new attributes (fields) or changing existing

ones. Many single-type objects can be used in the project, and they basically have to

lellect the tasks that are to be done and they must be characterized by values oftheir
attributes. Separate objects are mutually connected through sequence relations.

The testir g ol project object management includes a check of the correctness

o1'object types, as well as of changes in the value of object attributes The testing

nrodel is depicted in Figure 3, where the vertices ol the graph who one type of the

obiect and objects corresponding to it, while the branches represent operations with

otr.iect types and objects. During the test, operations with object types and the

corresponding objects were tested at depth 2. That means that the testing was

considered to be sufficient when type changes were checked along with the

colrespondence ofchanges in corresponding objects to all possible operation couples.

.{s rvas the case in the data base testing, the object management test also did not use
lools for test capture and retrieval. This meant that much time was needed, and the
resting model was developed and applied by the programmer group only after
problems had been encountered in the testing ofobject management. As was the case

prcviously, after the implementation of systematic testing in the development group,
thc number oferrors discovered in further phases declined significantly.

Figure 3, The project ohject ntanagement testing model

5.3 The rnodel for testing of window coooeration

ln the Mosaik 5.0 project, the depiction ol project objects is particularly
cornplicated, because one and the same object can be displayed in several windows and
in several formats. As a result of this, the programmers developed a window
(roperation testing model, which is illustrated in Figure 4. The vertices of the graph
rcl)resent the windows which are open during the operations of the system, while the
b|anches represent opera.:ons with the windows.

Qr,n/Closc
TTpWND

Opcn/Closc

Valuc WND

Q:cn l

holcct WND;

Qrn/Closc i

Valug WND :

Figure 4. The model for testing of window cooperation

165

The testing ofwindow cooperation involves the opening and closing ofmany
copies of a single type of window, as well as a check of the correctness of transfers
among windows of various types. The test was considered to be coinplete when
cooperation between two copies ofall types ofwindows had been tested.

Statistics affirm that the timely elaboration of a model and the implementation
of systematic testing in the development group significantly reduced the number of
errors that were discovered in the last phase ofthe testing.

-

5.4 The model for testing of calculations

The test ofthe correctness ofcalculations was performed as follows: Several
projects were elaborated in the Mosaik 5.0 system where each project served as the
basis for one set of tests. ln order to check the coffectness of the operation of the
developed programs, calculations with different options and object values were

' executed, and the results were compared to standard values as calculated by the tester.
This well-known method for checking calculations proved to be most effective. After
the tests were drafted and the standard values were calculated, the test itselftook little
tinre (meaning the execution of the program and a comparison of the result to the
standard values). The test was easy to repeat, and it was very sensitive to program
errors. The testing model is represented in Figure 5, where the vertices ofthe graph

show the constructions which are permitted in the project graph: linear branch, OR
construction, AND construction, and segment. The branches show their applicability
in the corresponding constructions. The tests were elaborated so that they would
include all possible combinations of constructions at depth 2 (meaning 12 in total).
This means that a test was developed in which the linear branch included the OR
construction, the AND construction, and a segment, where each of the constructions
fbr its part included a linear branch, an OR construction, an AND construction and a
segment, etc.

Figure 5. The model for testing of calculations

The model for testing of calculations proved to be so sensitive toward errors in
the program that after the developrnent qfthe calculation testing project, only a few
insignificant €rrors were found in the next testing phases.

166

6. Main conclusions

Even though the statistics collected from the testing of one specific system do
not allow us to draw generalized conclusions, the following can be said safely:

. Systematic testing has distinct advantages over intuitive testing;
o The functional testing of specific systems must use testing models which are

appropriate for the specific instance and which are set out by the
specifications ofthe system that is being developed;

e Testing on the principle of "depth 2" was, at least in the testing oi: this
system, sufficient to reveal errors properly;

r This paper provides a brief look at models for testing of data base
management, object management, user interface and calculation testing, and
these are typical for the testing ofmany different kinds ofsystems.

Refeiences

[Beiz 95] Boris Beizer. Black-Box Testing Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, Inc, USA, 1995, 294 pp

[Over 95] Jan Overbeck. Testing Object-Oriented Software and Reusability -
Contradiction or Key to Success. ('onference Proceedings, Eighth
International &tftware Quality Ikek 1995, Software Research Institute,
usA, 1995

[Bic 79] J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, and E.F.Miller. SMOTL- a
system to construct samples for data processing program debugging. IEEL
I'ransactions otr Sttiware lingineering, SE-5, No. 1,1979,pp.60-66

[Auz 91] A.Auzins, J.Barzdins, J.Bicevskis, K.Cerans, A.Kalnins. Automatic
construction oftest sets: a theoretical approach" Lechtre Noles in
('ompuler Science. Vol. 502, Springer - Verlag, 1991.

[Beiz97l B.Beizer An overview oftesting. Quality Week Europe 1997. Tutoriol
y'y'ole.r'. Software Research Institute, USA,

,1997.

167

