
Practitioner's Approach to Software
Cost Estimation

Baiba Apine

Riga Institute of Information Technology

Skanstes iela 13, LV-1013 Riga, Latvia

E-mail : baiba.apine@dati.lv

One ofthe most difficult and important software development activities is effective

software'estimation. Nevertheless it is one of the most important. Number of formal

software project estimation methods have been developed. Several methods based on

function points are discussed and problems dealing with practical usage ofthese methods

are highlighted our experience in,1j,iir?:il?. .ocoMo II and objecrPoint

l. Introduction

Effective software estimation is one of the most difficult software development

activities. Nevertheless it is one of the most important. Underestimating a project will
lead to under staffing it, under scoping the quality assurance effort, and setting too short

a schedule. That can lead to staff bumout, low quality, loss of credibility as deadlines

are missed, and ultimately to an ineffrcient development effort that takes longer than

nominal fl1.

Overestimating a project can be almost bad, the project will take as long as

estimated.

Usually estimates are made using past experience only. This solution is good in

cases when new project is of the same size and requires the same amount of effort.

Number of formal software projects estimation methods have been developed. All of

14'7

them have their own strength and weaknesses.

We are going to use these methods to estimate the workamount of the software

projects we have to develop and do it as early as possible. Software total cost means the

cost of the whole software development process: specification, coding, testing,

documenling, configuration management etc. This procesb could be estimated from

various aspects: productivity - output of the software engineering process, quality - how

software developed satisfies the needs of customer and functionality - how the software

is built [3]. Let us concentrate on functional aspect ofthe software development process:

how to estimate the cost of the software functions. The first who proposed this method

was 2cht [2]. Now there are various modifications of this method,

2. Method

From the user's point of view system functions would be grouped in five grc':ps [3]:

user inputs, user outputs, user inquiries (on-line input that results in the generation of

some immediate. software response), logical files (logical grouping of data, and there is

no difference whether it is a database or temporary data for internal use only), extemal

interfaces (maihine readable interface used for data transmission to another application).

Each item of the each group should be estimated as simple, average or complex.

Multiple each counted item with appropriate weighting factor'given in Table l, and

count total. The total you get is called unadjusted fui:-tion points (FP). Determination of

complexiry is considered to be subjective, but there are resources giving more formal

criteria for determination [4].

Measurement parameter Weighting factor

Simple Average Complex

Number of user inputs 3 4 6

Number ofuser outputs 4 5 7

Number of user inquires 3 4 6

Number of files 1 l0 l5

Number of extemal interfaces 5 7 10

148

Table l. Function oriented estimation weighting coefficients

Most of software cost estimation methods based on COCOMO (COCOMO X)

use unadjusted function points as input data.

Function points are independent from the software development environment

and this makes the method especially convenient in the large companies with a diversity

of software platforms being used in projects. To estimate the number of lines of code,

convertion coefficients are used. These coefficients differs for each software

development environment and gives average number of lines of code per function point

p], t41. Figures of estimated lines of code are very important. In companies having

large software development experience these figures may give very precise estimation of

the person months and calendar months necessary for software development.

A lot of different factors should be kept in mind, for instance, previous

experience in solving similar problems, scheduling, communications, etc. A cost driver

refers to a paxticular characteristic of the software development that has the effect of
increasing or decreasing the amount of development effort, e.g. required product

reliability, execution time constraints, project team experience.

Method could be adjusted for software maintenance, reengineering etc. In most

cases we use one of the COCOMO estimation models - the Early Design model. This

model is used in the very early stages of a software project when little may be known

about the size of the product to be developed, the nature of the target platform, or

detailed specifics ofthe process to be used [4].

Another useful model is the Application composition model (Objectpoint

method). This model addresses applications composed from interoperable components

I4l.

Our experience is that the most difficult and the most dangerous activity ofthe

estimation process is calculation of function points.

1. Estimation Accuracy

In the earliest gtages of software development life cycle, when the request for proposal is

received from a customer, very little may be known about software development

t49

environment, staff involved, etc. Some functionality may be not specified or imprecise.

Chart given in Figure I [4] indicates the accuracy ofsoftware estimation. In cases when

request for proposal is the only available document with functionality of the system

described very approximately, project could be overestimated or underestimated up to

four times. that could lead to significant project managerRent problems. It is very

important to involve experienced system analysts in software estimation process to

achieve more precise results.

4

3.5

o3
Et

E 2.5
o
.Nutz
o

E 1.5
6t1

0.5

0
Request for Concept of fuquirefiEnts Product design &taildesign
proposal operation specificatbn specificalion Epecitication

Accepted
soflw are

Figure I . Estimation accuracy of software projects.

2. Common Problems and Solutions

We use estimation methods in the earliest stages of software development process to get

preliminary results when request for proposal is received. Hence there are not enough

useful information which could be used for counting of function points or estimating the

software development platform and staff being involved in potential project. Some

information may be omitted in these documents. Additional information could be

gathered during interviews with potential.customers, but in most cases request for

proposal is the only document available. Results of estimation must be included in

150

:

proposal as accurate figures, but very often there is a lack ofinformation to get them.

Not all customers provides clearly formulated requests. some of them are

brilliant experts in their own professional area, but have not enough experience in
software systems. In this case interviews highlight basic software system demands.

Results of interviews are the input material for both preliminary software estimation and
the software system's proposal.

In cases when at least software requirements specification is available,

estimation results are very close to real development effort, estimation error is
approximately 15% - 25% (see Figure l). From the developers viewpoint, it is better to
overestimate project (50% or more) than underestimate it.

Situation, when customer is another software company that outsources a project,

differs from described above. Basically they already have done some estimation with
their own methods and provide some initial figures. rn most cases these figures are

believable, but tend to underestimate the software development effort.

It is hard in the large variety ofmethods to choose the best one. For several years

we are using cocoMo and cocoMo II methods for software estimation. The main
reason we choose coCoMo was that it supports different quality levels of input data
different quality. Mo.e precise input gives nroro prccise output and it *,ourd be kept in
mind.

90

80

70
60

Peson- 50
tlbnths 40

30
20

10

0

I Psson - rnorttE B6ic COCOftTO

tPe{sm - nulths mCOitO ll

f Person-nutths Red

.T;..":..'ti.-"";e;C9
Function points

Figure 2. Comparison of estimation results

t5l

Basic COCOMO was the first method we started with. This method was quite

good. Nevertheless some important aspects of software development process were

ignored. Basic COCOMO method uses 14 very important cost drivers [3] besides the

classification ofthe software project's type - organic, semidetached or embedded. They

cover software system itself, but do not touch the software development process. Cost

drivers covering software development process are added in COCOMO II. For instance,

whether the software development environment supports software development life

cycle, whether developers' teamwork is supported, staff capability and interactions, etc.

.While COCOMO II method's Early Design Model gives more precise estimation

results, we still use both COCOMO and COCOMO II to achieve more believable

results (see Figure 2).

Chart given in Figure 2 shows software projects developed by using ofMicrosoft

software de'relopment environments (MS Access, MS Visual Basic and MS Visual

C++). All these projects were estimated using Basic COCOMO and COCOMO II Early

design model with software requirements specification used as input data for the

estimation. The real workamount for the project development is cornpared with the

result of estimation. Basically both methods overestimate projects. There are two

projects underestimated by Basic COCOMO method (see Figure 2). The reason is that

the software design specification was not precise and approximately 600/o of code had to

be thrown away. Percentage of breakage must be counted to adjust the effective size of

the product.

Chart given in Figure 2 shows differences between estimation results given by

Basic COCOMO and COCOMO II. The reason is appliance of cost drivers not

suppoded by Basic COCOMO, but affecting estimation results of COCOMO II

significantly. These cost drivers deal with personnel capability and experience. Values

of the cost drivers are adjusted experimentally, so in different companies they may

differ. Even in one particular company it is necessary to adjust values for each software

development group.

Both methods Basic COCOMO and COCOMO II provide development schedule

estimates. Chart in Figure 3 shows development schedule estimation results for the

software projects, which development effort in person-months is given in Figure 2.

Adjusting calendar months for software development process is very important activity.
152

In most cases Basic cocoMo and cocoMo II overestimates calendar months
necessary for software development. Nevertheless there are two projects underestimated
in schedule by. Basic COCOMO (see Figure 3 project_S and project_6).

Underestimation is relatively small: average l4%o (see Figure I).

16

,14
€12
s10
FB,E 6

*4o2
0

lBasic COCOMO

;COCOMO il

rReal l

a.".Ot a...* a."tO' a...O' a...O' a.....t
Function points

Figure 3. Time schedule estimation with Basic cocoMo and cocoMo II

Besides Basic cocoMo and cocoMo II we have tried to use objectpoint
method for relatively small and simpre apprications, which courd be built using standard
data and user interface modules and without comprex argorithms. currently objectpoint
method was rejected, because we have onry few projects with software being developed
by "ready to use" interoperable components only. This method tend to underestimate
projects with additionar programming activities (see Figure 4). projects estimated with
objectPoints method were deveroped using data access objects and standard visuar
objects connected to them (for instance, MS Access table and database grid control
connected to this particular database tabre) and some additional programming was
necessary for data selection.

software development environments are changing and coeffrcients used for
transformation of the function points to lines of code must be adjusted for new
environments. After examining l0 different projects developed using Microsoft
software development tools in our company,.we found the following coefficients for
converting function points to lines ofcode (Table 2).

1s3

Sometimes software system is initially divided into subsystems or could be

divided during the development process. The software system could be estimated as the

whole one or by its subsystems. Figure 5 shows the difference between estimation

results for whole system and for decomposed one both estimated by using COCOMO II.

There are three reasons for higher values for whole project than for decomposed one:

1) product complexity increases,

2) additional management is necessary for larger project,

3) staffcommunications are more time consuming.

35

30

25

20

15

10

5

0

Project_1 Project_3

Projects

Project 2

Figure 4. Software project estimation with ObjectPoint method

Software development Source lines ofcode per unadjusted function poinl

environment SLOC / UFP

isual Basic 4.0, 5.0 25

isual C++ 27

Table 2. Coefficients used for converting function points to lines ofsource code

The conclusion from tendency given in Figure 5 should be: decompose complex

system into subsystems and the price of the whole project will be lower. Besides it, chart

given in Figure 6 shows difference in estimated calendar months between the whole

o
.g
tr
o

=
co!,
0,
o-

t ObjectPoints

I Real

t54

system and decomposed one. This difference grows faster than difference in cost (see

Figure 5). Divided systems need more development time. If time limit allows, some

decomposition could be made to lower total cost of the whole project.

2@

1S
160

1&
1n

Fer$n-rsflBlm
&
.60

4.n

-

D\i*dirtost.t6},steTs

- - - -Y*deprqd

-

Di\,ided into
subsystems

-,.-- Wholeproject

2m601m
FundimFdrG

Figure 5. Estimation results for whole and decomposed system

TU

60

50

40

30

20

10

0

600

Function Points

Figure 6. Estimation of calendar months for decomposed and whole systems

1. Conclusions

The main problem in the estimation process is lack of input information. Especially if
formal estimation methods are used for softwaie projects "could be,'. Results of

o

c
o

=oE
Es
Go

155

estimation must be included in proposal as accurate figures, but very often there is a

lack of information for getting them.

The most complex and responsible part in the software estimation process is to

get precise count of function points. The main reason of estimation faults is incorrect

counting offunction points. Therefore experienced systeir analysts could be involved in

estimation process.

Although estimation process is based on formal models, it is the kind of art. It is

very hard to make customer accept estimation results, whioh may be overestimated up to

4 times (see Figure l). From the opposite side, upper level managers and administration

' tend to think that evaluation results are ideally precise.

2. References

ill http//wwrv.ifpug.org/ifpug

t21 A.J.2cht. Measuring Application Development Productivity,_Proc. IBM Applic.

Dev. Synposium, Monterey, California. 191 9, pp. 83 -92.

t3l R.Pressman. Software Engineering: A Practitioner's Approach.*McGraw-Hill,

1992, pp 41-91.

t4l C.Abts, t].4, B.Clark. S.Devnani-Clrulani. COCOMO II Model Definition

Manual._University of Southern California, 68 p.

156

