
Java Applets and Security

Petri Niinimaki & Panu Markkanen Jorma Kajava

Nokia Telecommunications University of Oulu

Teknologiantie 3C, FIN-90570 Oulu, Linnanmaa, FIN-90570 Oulu, Finland

Finland kajava@rieska.oulu.fi

Petri.Niinimaki @ ntc.nokia.com

Panu.Markkanen @ ntc.nokia.com

Abstract

The paper summarires the coilected infbrmation about Java appret security which has

become an object of interest for several parties. The security is based on the sandbox con-

cept where the executable content is located and run isolated from the rest ofthe syslem.

ln this paper the key security issues related to the Java applets are discussed. what the

problems are, how they re solved, what holes are still left, md what does the future bring

along to this fast growing business related to networks.

The used references are books and articles found from the www. The web offered

much information which probably was correct but one could not be sure about it. Therefore

a critical approach was used with the information gathered from the Web.

Keywords: computer and information security, Java applet security, WWW security.

1. Introduction

Java is a several years old programming language developed by sun Microsystems. It
has quickly become a serious way of implementing platform-independent software. Java

is nowadays used to create web applications. The power - and the danger - ofJava is that

Java's executable contents, applets, can be loaded over the network and executed by the

web browsers in the user's computer.

125

Since one of the initial goals of Java was for it to be used in embedded systems with

minimum resources, the language is designed to be compact and also to use small

amount of hardware resources. There are special Java processors being built to optimize

the code execution.

With the immense size of today's applications the jrlatform independence is

becoming the prime factor for software development. Java provides platform

independence via Virtual Machine (VM) implementations on multiple platforms.

The platform independence also provides flexibility into client/server architecture by

enabling cost-effective selection of clients. Clients running the Java VM are granted

aCcess to the server. Then the actual client software is downloaded and executed. This

enables the server to require the use of custom client software because the client does

not have to acquire the software beforehand. Also the distributed computing is a

practical reality now []. Distributed development architectures allow applications to be

divided into pieces, each of which can exist in different locations. The ease of access

increases security concerns.

When the applications are written in Java the management of software resources can

be centralized. Since all the software resides in the central archive, few maintenance

operations are needed in the network terminals. This brings down the maintenance costs

drastically.

Many companies have been rushing into the Web just to keep up with the latest

development with little regard on the impact it has on their information security. The

security aspects of web applications have been brought to the front along with the Java

applets which have become very popular among the web page builders.

Java applets are offering power and expressiveness especially to the World Wide

Web (WWW or Web). The Web is traditionally based on scripts run on servers which is

quite limiting. Applets give the possibility to run real programs locally. [2]

The security of web applications is essential for the organizations which have intemet

access. E.g. electronic commerce needs reliable web applications with secure

transactions. The users should be able to trust that the web applications cannot break the

integrity of the information stored on their computers.

Java is undei constant reviews and has not yet been standardized. It is a relatively new

programming language and therefore its security features are not verified in real

environments. As Java applets are loaded from the net to the user's computer and
126

executed without prior notice malicious code can try to penetrate the security defences.

This brings a new aspect to computer and information security and has received much
attention throughout the information processing community.

This paper has been written to offer a view to Java applet security, the problems,

solutions and future expectations. The main information source'for this paper was [3].
Additional information was obtained from www articles using a critical approach.

There is a lot of information available in the web but its reliability is somewhat

uncertain.

2. Iava applet security

Java programs can be divided into two different types: applications and applets. The
applications are like any other program, just made with Java. The applets are executable

contents which are meant to be run in the context of a web browser. At the moment, the
applets are the most important area of Java application.

According to sun Microsystems Java is a simple, object-oriented, distributed,
interpreted, robust, secure, architecture neutral, portable, high_performance,

multithreaded, and dynamic language [4]. Java includes e.g. the foilowing features:

o object-oriented, data-centric model

. native multi-threading support

o restricted access to runtime environment

o runtime verification ofcode integrity

r garbage collection

r no pointers

. no macro support

r compiler-generated symbolic byte code (interpretable)

r digital signature

. encryption

Data-centric model means that the data objects possess associated methods which
perform actions on data objects.

r27

The removal of pointers removes a significant eror source. For example in C/C++

programs the most errors are related to pointers. Deletion of used, unneeded resources is

automated in Java which also removes a common problem encountered in other

programming languages.

Digital signature and encryption are added to Javajust recegrtly (version 1.1) to make

up the seCurity features. As they are quite new additions, there ale most likely some

holes in them. Some have been found but others are still waiting to be detected.

The digital signature can be applied to files using a special tool. The signed files are

called Java Archive (JAR) files and they can contain Java classes and other data, such as

im4ges and sounds. Applets in JAR files are loaded by the appletviewer and in case of

trusted signature the applet has full rights like a local application.

There are several weaknesses in Java according to [5]. For example the Java

DataBase Connect for database connectivity requires a direct connection to the database

to work. This is not acceptable in information security. Also, the WWW browsersl set

so many restrictions that applets cannot be used in critical applications. [5]

The security of Java applets is critical since they are exceptionally easy to download,

sometimes even without the user noticing. Restricted intranets face the threat of users

downloading and executing harmful applets while netsurfing, thus exposing the intranet

to outside influence.

ln the following sections the three-tiered Java security foundation is discussed.

Applets are restricted to a 'sandbox' which relies heavily on the security foundations.

The sandbox offers an area in the web browser where the applet is located and run

without the fear of the appiet altering the data outside this area. [6]

Jeva
Ssurlty Manag0r

Jeva J8va

Class Loadd . Byto Codo Veifisl

Figure 1. Security foundations in Java

I Acroally, the restrictions arc set by Java security model md not by www-browsers as [5] slates

128

2.L Byte Code Verifier

In the case of applets the Byte code Verifier is located in the web browser. It is
responsible for verifying the Java byte code before the code is allowed to be run. The

Verifier ensures that the code which may or may not have been created by a Java

compiler is in accordance with the rules [3]. The key assumption made is that the byte

code has come from an untrusted source.

The work done by the verifier is the most complex part of bytecode verification

process. The four passes of verification include: ensure the class file has the right

format, verify other details without looking at the bytecodes, verify the bytecodes of
every class (done by the Byte code verifier), and verify rhe classes at load-rime. [7]

The verifier reconstructs the type state information with the help of symbolic

information included in the code.

> stacks are not overflowed
nor underflowed

> correct parameter types

> no illegal conversions

> no access to restricted
interfaces

> valid register accesses and
stores

> correct format

Figure 2. Java Byte Code Verifier

The verifier removes much of the checking that the interpreter should otherwise do.

Therefore the interpreter will run faster. Even though the verifier acts as the gatekeeper,

the Java run time system still has to be faultless. As yet, sun Microsystems has had less

flaws in its run time system than the other vendors (Netscape, Microsoft, Borland,

Symantec).

2.2 Class Loader

The Java Applet class Loader determines when and how an applet can add classes to

a running Java environment. class Loader is used when an attempt is made to load a

t29

class from any other place than the local machine. It makes sure that the important parts

of Java run time environment are not replaced by classes loaded from outside the

computer. The Class l,oader utilizes name spaces to which the classes are separated

according to their origin. [3]

A running Java environment can have many Class Loaders active, each defining its

own name space. Each Loader will load every applet into its own name space so the

applet does not see the other possible applets present. The applet will see only its own

classes and all ofthe classes in the standard Java library API. t3l

In case a class tries to reference another, the Class Loader will perform a search in

this particular order:

l. search local name space where built-in classes are

2. search name space of the class making the reference

3. search explicitly defined external name space with public methods

Applets downloaded from the Web cannot create their own Class Loaders nor invoke

methods in the system's Class Loader. This ensures that the loaded classes stay in their

sandbox and cannot breach out of it.

2.3 Security Manager

Java Security Manager restricts the ways an applet uses visible interfaces. Code in the

Java library consults the Security Manager whenever a potentially dangerous operation

is attempted. The Security Manager has the rights to generate a Security Exception

denying the operation. [3]

The Java run time library is written so that all access requests are referred to the

Security Manager. The main duties for Security Manager are to:

o prevent installation ofnew Class Loaders

. protect threads from each other

o control the creation of OS programs

. control access to OS processes

r control file system and socket operations

130

. control access to Java packages

The Security Manager is fully customizable though not by applets. The user can

customize the level of security for each module by using a special configuration file.

The Security Manager prevents the Java applets from:

. reading or writing fi1es on client system

r deleting orrenaming files on client system

r creating a directory on client system

r listing the contents of a directory

o checking whether a file exists

o obtaining information about a file

o creating network connections to hosts other than the one the applet came from

o listening for or accepting network connections from any port on the client system

r creating a toplevel window without 'untrusted window' banner

o obtaining user information

r defining any system properties

r running any program using Runtime.exec0

r making the Java interpreter exit

o loading dynamic libraries on client system

. creating or manipulating other threads

r creating Class Loader or Security Manager

. specifying any network control function

e defining packages that are part of packages on client system

2.4 Summary

The sandbox is of utmost importance to Java applet security. The sandbox, which is

mainly based on Byte Code Verifier, Class Loader, and Security Manager, allows

untrusted applets to be executed in a trusted environment without fear of comrption or

subterfuge [l]. Also the Java VM enforces the sandbox functionality by its own security

measufes.

Java relies on a practical approach to security. The security measures build on

preventing predicted attack scenarios. The problem with this approach is that it takes

into consideration only the known attacks. With the theoretical approach the security

could be formally proven in all situations.

3. Attack scenarios

The threats formed to the system by Java applets can be divided into four basic

categories (listed in order of decreasing severity) [3]:

ATTACK SCENARIOS

> system modification
> invasion of privacy

> denial of service

> antagonism

Figure 3. Java appl€t attack scenarios

The system modification is the most serious threat and that is why Java developers

have put a lot of effort into preventing it. The modification attack includes file altering

and deletion, memory alterations and process / thread killing. [31

lnvasion of privacy involves disclosing information about a user or host machine that

should not be published. Confidential information can be obtained in numerous ways:

From e-mails, microphones, process tables, and file access. The file VO is heavily

guarded in Java but also there is a weakness related to applets: They always have a

channel open back to their original host server. As a result, it is very easy to send

information once the applets get hold of it. Mail forging is a serious threat where the

applet loaded from a computer running in a second computer, will forge a message to a

third computer. [3]

In the denial of service attack the system resources are reserved by the attacker. This

could happen by filling up the file system, using all file pointers, allocating all of a

system's memory or using all of the machine's CPU time. Though the denial of service

is a real concern, the attack is not prevented in Java. This can form a problem as the

r32

denial of service attacks are very easy to implement and in addition the prevention is
difficult. [3]

Antagonizing attacks are merely annoying to the user but still form a threat. some
attacks can be classified as denial of service or antagonism depending on the context
they exist. Examples of antagonizing attacks could be playing bnwanted sound files or
showing text or images on the monitor. [31

4. Analysis

The references used were chosen using a critical approach. Known reliable sources

were used and in case ofunknown source the information reliability was considered and
possibly cross-checked from other sources.

As stated earlier in this paper Java is rerativery new language and it has not been
tested comprehensivery. A formar security model for Java is obviously needed to
provide a way to verify the security. without it there will be constant surprises when the
users find holes from the securityjust by coincidence or on purpose. The formalization
process requires a complete specification of Java source semantics which is not
currently available. Also the specification for byte code semantics is needed.

As the number of Java vendors increases, the number of Java security
implementations also increases. This introduces threats, since the lack of formal security
model prevents from verifying these new imprementations. The main problem is how to
ensure the security of the Java solutions shipped by non-Sun vendors without the formal
model. There are flaws in the particular versions of popular browsers that have gained a

CERT recommendation of disabling Java Ig].

one way to eliminate the security risk related to Java applets being roaded over the
net is to disable Java execution from the browser. This is a radical move, but it is the

only way to be certain that there will be no Java applets loaded, whether they are trusted

or not to the user's computer. If the user trusts some www-sites, he/she can enable the
Java applets while surfing on those particular sites and keep them disabled when going
outside those sites.

There is also a possibility to sign applets wiih the user's digitar signature. other
people can register this user's signature into their browsers if they trust this user and

133

haveobtainedthepublickeyfortheuser.Afterthat,thebrowserwillallowappletswith

that digital signature to be executed' This offers a significant improvement to the applet

security as companies can examine applets and after linding them harmless' sign them

with an acceptance label.

SunhasaddedthehumanjudgementfactorintoJavainforrnofdigitalsignature.This

could open a worm hole for the hostile applets to damage the computer system as

humans are often the weak link when it comes to secudty'

Cryptography is being added to Java Developer Kit (JDK)' but since U'S' federal

govemmentdoesnotallowstrongencryptiontoolstobeincludedinsoftwareexported

ot used outside the U.S., this cryptography option will be quite insufficient'

Javastilllacksauditingabilitywhichcertainlyisoneimportantsecurityfeature.The

historyinformationisinvaluablewhenabreak-inorsystemfailuremustbeexamined.

Sun is currently working on this issue'

Authentication protocols are being studied at the moment' If some solid

authentication mechanism could be added to Java it could open the Java applet

technology to wide commercial use, even to be applied in firewalls. Access control lists

are also coming into use, enabling further restrictions to systems and services'

The goal of Java security model is to ensure that untrusted applets cannot steal or

damageinformationonacomputerrunningaJava-enabledbrowser[9].Sincean

implementationbuginatrustedappletcouldopenaholethatcouldbeexploitedbyan

untrusted applet, the applet's design matters.

ThankstoJavaByteCode'sclarity,thebytecodeisveryeasytodecompile'This

leadstoproblemsinthecompanieswhichwanttouseJavaasa'developmentlanguage

but still fear that their code will be decompiled and exploited by other companies. There

isalreadyananswertothisproblemasobfuscatorsarebeingdeveloped.Another

problem is that crackers might decompile the target Java program to find out how it is

made and what are its weaknesses'

critical pieces of the Java environment directly affecting security include Java VM

and the built-in libraries of JDK. If any of these pieces have errors, the entire security

systemwillbreak,regardlessofwhichvendorcreatestheotherparts.Ffomasecurity

standpoint,theWebbrowser'simplementationoftheSecurityManagerismuchmore

critical than the implementation of the class l,oaders as without security Manager' a

Java applet has the same rights as a local Java application [2]'
134

The Security Manager has a relatively weak control on the top level window creation

by forcing the window to be marked as unsafe. This creation could be controlled more

tightly in order to prevent availability attacks which, for example, use the system's

resources by creating windows. Also there could be more control over display and audio

resources' access.

Java is at the moment the best choice to be used as a relatively safe means to provide

extra value to the Web world. ActiveX technology from Microsoft lacks the security

which is a very important feature when executable contents are used in the Web.

ActiveX relies on a fundamentally different approach than Java. The human

judgement used in the ActiveX security (in form of digital signature) is always

dangerous. Humans do not behave strictly according to rules which is needed to reach

acceptable security levels. People might accept malicious ActiveX (as well as digitally

signed Java applet) components by accident or on purpose.

So far there has been only few incidents where hostile Java / ActiveX programs have

done some serious damage to computer systems. It seems that the skillful people have

not moved into making malicious Java / ActiveX programs yet. [10]

5. Conclusion

Java applets have been, are, and will be insecure. The question is whether they are

secure enough to be used in serious applications. Java applet is still a much better

alternative than Microsoft's ActiveX, which does not include sufficient security

mechanisms.

For systems with high security demands, the Java is not recommended because the

trade-off between the security aspects and the power is not good enough. But in systems

where security is not the key issue, Java offers benefits along with acceptable security

risks.

The Java applet technology is already being used by software houses, e.g. Corel

Office is published as a combination of Java application and applets. The popularity of

Java is growing all the time. Therefore, rapid development of Java's security features

and also the fast bug fixing are essential - a widely used technology must not have

security holes.

135

ln the future the network management could be done using Java applets. The Java

applet security would have to be at a sufficient level before this could happen on a large

scale.

The portable computer's security along with so-called dummy agents is a potential

area of further studies. The dummy agents can search for cerain information from the

Web when the user gives an order. The concept of having a portable computer and a

mobile phone embedded into the system brings a new security viewpoint. The security

issues must be examined carefully especially when the agents run in the computer get

smart and start working independently. They might even be able to use your money on

their own.

References

tll

{21

t3l

t4l

t51

Anonymous (1997) Secure computing with Java: Now and the future. Sun

Microsystems. http://java.sun.com/marketing/collateral/security.html

Bank J.A. (1995) Java Security.

http ://swi ssnet. ai. mit.edu/-jbanlc/javapaper/javapaper.html

McGraw G. & Felten E. (1996) Java security: hostile applets, holes & antidotes.

Wiley Computer Publishing. http://www.wiley.com/compbooks/

Anonymous (1995) The Java language: a white paper. Sun Microsystems.

http://java.sun.com

Lappalainen P. (1997) The Exploitation of Interner in Digital Mobile phone

Networks (in Finnish). Department of Information Processing Science, University of

Oulu,70 pg.

Fritzinger J.S. & Mueller M. (| 995) Java Security.

http://www javasoft.com/security/whitepaper.txt

Yellin F. Low Level Security in Java. http://www.cs.wisc.edu/-lhl/cs740/java.html

http://www.cert.org

l,each B. (I 995) The Java security mechanisms.

http://compsoc.lat.oz.au//-leachbj/java,/security.html

http://www.cs.princeton.edu/sip/java-vs-activex.html

t6l

a7t

t81

te1

tl0l

