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of Semantic Web technologies and the need to enable those to access
unt of data that are existing in the form of relational databases (RDB)

ofile [11] or other related graphical notation, e.g. OWLGrEd [12,13],




394

as outlined in [15] has appeared less than satisfactory in practice, as did th
of hand-coding the mappings in a low-level model transformation 1
intermediate data representation forms in a MOF-based [16] repository.
The purpose of this paper is to offer a soundly motivated and pract ca
approach for RDB-to-RDF/OWL mapping that is suitable to cope with
practical examples, as well as is extensible beyond those. Our solution, E
consists in a simple MOF-style mapping metamodel (that can be re-phr
also into a mapping OWL ontology), together with its implementation by
automatically generating SQL statements that create (dump) RDF triples €
ding to the target OWL ontology from source RDB data. The simple stru
metamodel allows treating its models also as documentation of the corre
between the RDB and RDF/OWL schemas (accessible at least to technic
user); this is important when the semantically re-engineered RDF/OWL |
themselves regarded as user-level documentation of the technical RDB s
Although the basic concepts of the RDB20WL mapping metamodel are
fairly standard (a RDE/OWL class mapping to RDB table, a datatyp
mapping to table field in the context of a mapping between the table and th
domain class, an object property mapping based on a relation between
mapped onto the domain and range classes of the property, all of th
expressions and table joins, where necessary), their presentation here in a
metamodel appears to be less common. Furthermore, we identify a few ty]
?:mwmnmgmmbm?owomo mo_cao:m

for their transparent (user-friendly)
a mapping definition, including the cases when this leads to “meta-levi
over the RDB schema and/or OWL ontology definition (e.g., analyzing all
with a fixed specifi

ed domain, necessary to succinctly reflect a concep
means of subclasses; or meta-

level information tables for grouping table
single multi-valued datatype or object property). Yet another ‘“non-con
WUWNOQHW:/\E:&:o_mmméola&_@ Bm@?:mm

§
that do not generate ¢
but can be referred to in object or datatype property mappings.
We note that our approach is not (at least in this paper) looking for
mapping generation from field-to-property correspondences in the style o
(on a practical note, we need a richer join filtering language than CLIO
are not primarily looking at applying the defined mappings in retrieving th
source RDB on-the-fly when the data are requested by queries in a
environment, as in [3], [4] and [5]. This saves us at least the conside
efficiency of integrating queries over RDB into those over RDF data stoi
allows for a greater freedom in mapping construction techniques.
approach to ours is that of R20 [2], where the same principal schema o
the SQL engine for implementing the declaratively specified mappings is s
The technical novelty of RDB2OWL with respect to these and related
is in the said mapping pattern observations which we believe to be worth
in the RDB-to-RDF translation standardization effort [6]. On a practical
report on the experience of building RDB-to-OWL mapping for six La
registries [9], [10] within the presented simple mapping specification Str
believe that the RDB20WL mappings could be easily turned into a hus

WMMMMW %Hmmvgmm.zmmono: 3 introduces the (core) RDB20OWL
ection 4 illustrates it on a simple mini-universi

> . = Sity e

5]. Section 5 describes the advanced mapping facilities, v\mowmw%_m

FB@EH&.—HOHH EHQ (5.4 mV@HH@SO@. m C mu
(& HHOHM “ TOV Q@w rthe clate WO
1 ? : T T ~ Q H.w

)ping framework

shows the architecture of RDB-to-RD
.,m.nm.B@ioﬁw. e

ping process in the

uses| OWL Ontology/
RDF schema

executes
produces

corresponds

SQL Engine RDF data

(triples)

Fig. 1. RDB20OWL framework architecture

2 e,
Hﬁummmvmmmmamw Bm@?:m_a to establish a correspondence between a
a or several schemas) and elements (entiti
s schema part) or RDF schema (a si i vt o
: single mapping can involve possi
V ac%%ﬂm@_mv, w,m that the corresponding RDB records could be :msmwww_\
ples that correspond to the given ontolo
3 ; gy or RDF sch :
“.MV M_mﬁ ‘co.:_ aEw M&mzo:m_ database and OWL ontology are m?nsoﬂ_\wﬁ: the
in mind where the RDB contains an existin ith |
. . g data set with techni
ir M”..Emsos and possibly de-normalization issues present, and %%ML_
cor a Mwom ononwEm_ representation of the data present in the a“mﬁmcmmw (e.g
an perties are provided with names understandabl i ert,
[ th n: e to a domain e
,MM.WMWW@ v%mgﬂwm: oomo_o@ﬁm is introduced where appropriate, a x%_MMm
: e model is given preceden ical
S possibly present in the RDB anow. e over fechmenl stmucture
p .MW%NML ﬂmﬁ.@_:m describes rules for extracting RDF triple information from
.E:EM wa_w Wo% the source model properties — the properties that can be
| . oE B momew m.:ﬁ the corresponding database records (e.g
,.Obm . hm s therein, joining related tables, applying filters m:m
E %HM_W,M\@ Qm M:MH_ constrain the mapping generation process by
- 'get model filters (e.g. cardinalities! i
: , property domain/r
or presence of class axioms) over the generated ﬁww\o? Hrw %mwm

form which is important when the target ontologies are regarded as docume
the source RDB; this is an important factor within the Semantic Latvia [8] af

[

N:mw gﬁ:m:mcﬂ SOCHQ ODmNZ ﬁUO 01 Q.O AA—O_VQ A—O ce of _v 11 Process
i w._@ Q.— H W i p

) ; ) . € generatio

[ % N:C«c ear _HOH mstances to WQ_H ﬁEOCWT:, CA\EHO U~OOEEW HTO :“—m:..@_ : ones 4
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ontology constraints over the target RDF a.mS can cn.oramwwa EMM m w_m T
completion of the mapping process m.nm their satisfaction is Hmmmawbw . .”
mapping correctness, and the semantic oo_..nooiomm of the mocnon.ﬁr e
We note also that although we are ?‘E.EE% oosoo_,:am_ with pr .
RDB20WL approach in conjunction ,SE. its implementation =m5mcm_“,
other mapping implementations on the basis of RDB2OWL are possi

Condition Item
i opName: (=,<>,<> <=, >=s

null, is not nully

ColumnRef
qName: String
column: Column

{ordered}| 1.2 + =% /, concat,

substring, ...

ValueExpression

datatype: SQL Dataype —|_{ordered)

A4

Fig. 3. The expression and filter metamodel

mapping consists of “elementary mappings”, or maps, that are
lassMap, ObjectPropertyMap and DatatypePropertyMap classes in the
imodel. The class maps (ClassMap instances) are responsible for Table-
» mappings (with options to add a filtering expression and linked tables).
pe property maps (DatatypePropertyMap instances) provide Column-to-
eProperty mappings. Each datatype property map is based on a source
can access the class map’s table information; it can introduce further
and filters into the table context for column expression evaluation.
property maps (ObjectPropertyMap instances) establish OWL object
s that correspond to related tables in the database. The tables to be

3 The mapping metamodel fl

We present the core Eum..woéw M%@Em Ewﬁﬂﬂmﬂmmﬂ Wo W\HOm-mQ_w g_ .
i itional expression and filter metam - '
> %MM MWMMHMO&@_ HWWE to RDB schema and OWL ontology structure
presented here in the form of metamodel (the DB MM (fragment)
metamodel (fragment)). The RDB2OWL classes themselves are mzoﬂu
part of Figure 2. The instance of the RDB20OWL metamodel is .m wﬂ
mappings that each relates (maps) concrete RDB data A.SEM 8N< i <m i
triples (these RDF triples can be thought of as containing “instance Inform from source and target class maps of the object property map; they are
the OWL concepts presented in the OWL EnﬂmBom& fragment). s) of RD explicit join condition specification in the object property map’s filter
For the mapping definition and nwo%waos o:_.w MMMMW MMWMMMMV ﬁ%n tom TableExpression class); further linked tables and filtering expressions
ontology structure are used. The mappi . i ed into object property maps, as well.
M%M/Mmm ooEBﬂMW they are not Moww\wsm N: @Mﬁwww\owmwﬁmm MMR“NM _Hw s maps that are denoted as virtual (isVirfual=true) are not used for the
resent in RDB schema (although, when account J eneration themselves, still, they can be referred to from object and
wwﬁﬂwww ﬁw provide a more mcoﬁbom mapping %MEWMNPMMW_M“WM% M,.,—m.h . %mna\ maps. We require an instance of OWL Class to be linked to each
OWL part, in the case of raw mappin ; il class map.
M“o%m&a to Oﬁ<<h entities (OWL classes, OWL datatype and oEomnnmw.u ‘ ject property map x and its source and target class maps s and 7 we
the advanced mapping features we include, r.oéméﬁ. the Aowwﬂb ) ; X as a table expression has an expression reference (an ExprRef instance)
information for OWL classes, as well as domain information for OWL pr¢ that points to s as referredExpr, and an expression reference with alias
range information for OWL object properties. s to 7. In a similar way, we require that a datatype property map (as a
sion) has a reference to its source class map (also, viewed as a table
in this case we allow not specifying alias name.
y, OWL classes Teacher and Course may relate to class maps that are
B tables Teacher and Course, respectively. An object property map for the
hes can be described by a table expression (Teacher S, Course T:
ID = T.Teacher_ID), where S is the alias for the source class map’s table
T is the alias for the target class map’s table Course and the string
" ID = T.Teacher_ID’ is the value of the property map’s filter attribute.
 presents the example more precisely (see Figure 6).
ble expression e (TableExpression instance; it can be also a class map or a
nap) is built up from possibly alias-identified references that refer each
database table, or to another table expression (called a sub-expression of e);
the sub-expression structure not to contain loops. Every table expression
ced to its flattened form that is a set of linked and possibly alias-identified
can be interpreted as a SQL table context for filter attribute, as well as for
p's uriPattern attribute and datatype property map’s expr attribute evaluation.

T s N
| DB MM (fragment)

Database
dbName: String
connection: String

localName: String[0..1]
entityURI:String[1]

referredExpr

|
b
|
|

ClassMap :
uriPattern: ValueExpression
isVirtual:Boolean=false -~

1[source 1

OEvaauméEJ‘

DatatypePropertyMap e

expr: ValueExpression

target
"

PropertyMap

1 XSD Datatype

description:String

SRR S

Fig. 2. The core RDB20WL mapping metamodel
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m awﬁwaﬁm property map, then p.expr is evaluated and the result is
ed into a string value d; let dr:XSD Datatype be the one linked to
; ‘mcor di exists, otherwise let dr:XSD Datatype be the one linked to
ype of p.expr. We form an RDF triple

.v@.mzsqsg concat(d,” ™, dt.description)>, where concat is a string

The flattened form of a table expression e is defined with respect to if
list and filter by induction on its structure (the subclass attributes uriPatte
and expr, if defined, are not affected by the flattening construction):

@) if e refers only to tables, then it is in the flattened form;

(i1) if ¢ has e’ as a sub-expression without an alias, then e’

included in e flattened form (for the filter the inclusion n enation operation;
filter of e’ flattened form as a conjunct); is an object pro

(iii) if e has e’ as a sub-expression with alias A, then e’ flattenee nces) in %6 axﬂﬁmm“ﬂ HWWMUMMM\:QMHMB%@MMMMJMQ MOME&E&Q

included in e flattened form ef via adding the prefix A to refix, and the updated expression z.uriPattern” is evaluat _M_o cﬁ e Em. 1
occur in e’f; if some table is included in e’f without an alue, denote it by 7u; we form an RDF triple <su,o.enti QM : Mc 0 a string
referred to by alias A in ef; the insertion of the alias or W triple generation a simple triple ovméNmﬂwo.s mmﬂw _.v %V.:

performed also within the e’f filter before adding it to ef filter. ations described below in the extended mappin %W% ’ 08_ i

For instance, a join of two expressions (Company C, Person P; C. nization for any two triples with the same subject g » we call it
and (Person P, Address A; P.PID=A.PID) T would be flattened into ( w3.0rg/1999/02/22-rdf-syntax-ns#type’, URI_A> and
Person SP, Person TP, Address TA; SC.CID=SP.CID and TP.PID=TA. -w3.org/ Hooo\ow\ww-aam.mvﬁﬁmx-:m#&ﬁo,, URI_B>, if the OWL cl
be augmented at the outer level by a further filter, e.g. SP.PID=TP.PID. '/ = URI_A is a subclass of OWL class 25_, w::dws_mw = URI_B, th it

We require that the flattened form of any table expression be unanin triples (the one relating u with the “su erclass”), is d - -5, then the
table context and that the filter (its flattened form), uriPattern and expr a P » 18 dropped.
defined within that table context. i

ni-university example

3.1 Semantics of RDF triple generation b
example, adopted from [15] of a simple relational database schema

iniature study registration system and the related OWL i

. : ontology (Figure
‘ oaﬂo_omw 1s presented in OWLGrEd [12,13] notation. Note %M%ém do
or the integrity constraints in the OWL ontology here.

The RDF triple generation in accordance to a concrete RDB2OWL m P
concrete set S of RDB records that correspond to the given RDB schema
in two consecutive phases: (i) raw triple generation, and (ii) triple optimiz

The raw triple generation is performed for each class map and each o
map and each datatype property map separately, in any order.

For a non-virtual class map c, its flattened form is (as a table expressio
against the RDB schema, filled by the records S, obtaining a set of (pos
and possibly repeating) data rows. For each of these data rows, the
c.uriPattern is evaluated into a string value, denote it by u, and an RDF (rig
<u, ‘http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type’, o.entityURI> s |

In the case, if ¢ flattened form has no references to DB tables, the
needs to be a constant value (or an expression thereof); in this case the cl
defines a constant RDF triple to be generated. .

For a property map p, let s be the corresponding source class map. If p personiD
property map, let  be the corresponding target class map. Let 0:OWL Pry : PA7SbRRIA 8 ¥ g]0.
one linked to p. Let sa (resp. ta) stand for the alias of the reference in e to :

We evaluate the property map p viewed as a table expression (we ¢
flattened form, if necessary) against the RDB schema filled by the
obtaining a set of (possibly joined and possibly repeating) data rows.
these data rows the following actions are taken:

@) the column references (ColumnRef instances) in the &
s.uriPattern are updated to include the sa prefix, and
expression s.uriPattern’™ is evaluated into a string value, denol

AssocProfessor

Professor

LD enrolled_|ACademicProgram

program Name string

QIANOOCWMMI_U
s UDENT_ID

Fig. 4. A RDB schema and ontology of mini-university

the EE@ splitting AQQ:.%S Teacher) and table merging (Person from Student
her) in .Sm ontology using the subclass relations; OWL class PersonID that is
b.@n%bmd\ M&\ columns in each of Student and Teacher tables: and the nn
Kes that reflects a student-to-course association that i i i
using Registration table. e KD
defines in abstract syntax via RDB20WL metamode] instances all class

Jm.o mini-universit
B y example. Note that there are two class ma i
s of OWL class “PersonID”. B SRretng



STcbiGHEE fiter="levelCode='Assistant' "

uriPattern=concat('Teacher',teacher id)

:ClassMa e = L 4 —
TableRef ="levelCode='Associale Professol
i Hmmnﬂzmn:nno:nmz.._.mma:mimmnzma id) Py
:ClassMa
TableRef

q T o8 =

filter="levelCode=" _u-oﬁmwmo_.. =)
r__ﬂ_vmsmgunc:om:_ﬁmmnsmq teacher id)

:ClassMa J COWL :

— uriPattern=concal(Teacher' teacher id) locall ="

isVirtual=true

tname="
Teacher'

:ClassMap __ Lk
sTableRst uriPattern=concat(‘PersonlD,idcode) SIS
:ClassMap \_

i :TableRef UriPattern=concal(PersoniD,ideode) [T
:Table

tname='Student' o

tname=Teacher Level

:ClassMaj = TocalName=
:TableRef UriPattern=concal( Student',student i) —
OWL c
='Registration’ :ClassMa 2 J TocalName=C
e R UriPattern=concat( Course',course id) -
TableRel [ | \irtuai=true ——
OWL |
-ClassMa localName=
‘TableRef fiter="required=1" coreai) Mandatory
tname=Course’ uriPattern=concat('Course',co p—
:ClassMa localName:
e Course'
filter="required=0' 4 . —
TalieRel uriPattern=concat('Course',course id) -
:OWL class
:ClassMa < localNaf
Table TableRef uriPattern=concat('Program’,program id) Program’ _ —
tname='Program’

Fig. 5. Mapping instances: class maps

j and dal
Figure 6 explains the instances for object property Rmmrmwnﬁa e
newi,mZaim Observe that the property Rnrnwnﬂ.q 18 mwﬂ%ww%om s
. d Course (the “rea
s to the classes Teacher an L . :
Mwﬂcﬁuoﬁm@ classes has been specified for their subclasses).

:ClassMa Tooal
:TableRef UriPattern=concal( Teacher'teacher id) | source et =l
referredExpr | isVirtual=true IT w
rRef
Tas= :ObjectPropertyMay
siepeS Titer=9.TeacherlD=T.TeacherlD"
Table
tname="
rRef ¥
Teacher' e ClassMap_ __| target E
referredEXpr [ riFattern=concal( Course',course id) __OWL|
" isVirtual=true soiirce localName=
TableRef
referredExpr

:DatatypePropertyMaj -
Table ExprRef expr=Name' ;
tname='"Course'

Fig. 6. Mapping instances: object property and datatype property maps

. . ol
The “standard” solution to specification of &o oEMQ property takes (goin;
intermediate Registration table) is shown in Figure 7.

i imi i lass maps re
2 The subclass optimization would achieve a m:E.SH omm—mm &Mm,ﬁwwp mmmemmBmwm M:
the teaches property map definition were uoﬁ virtual. M\ s oot
%m needed triple set locally, without invoking the general su
g
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TableRef :ClassMa :OWL class
! uriPattern=concat(’ source localName="Student’
i e S Student' student id)
[ — - = :OWL ObjectPropel
. ! |_____ObjectPropertyMa; localName=Takes’
“TableRef fiter="R. StudentiD=S StudenfiD
S=R and R.C D=T.Cx D'

‘ target
- —= :ClassMaj
:TableRef referredExpr uriPattern=concat('Course’ ,course id) :OWL class
I isVirtual=true localName="Course'

. 7. Mapping instances: property mapping through linked table

ow ever, an alternative solution that is based on not using the “real” class
lent and Course table-to-class mappings, but defining virtual class maps
88 Student and Course URI generation directly from the Registration
tion table contains the Student ID and Course_ID columns that are
lese URI generation). The alternative object property map definition is
ure 8. The down side of this solution is the need to re-specify the URI
ubject and object URI generation, however this possibility outlines the
irtual class maps.
class maps in the style of Figure 8 are essential, if we want to define
-to-RDF/OWL mappings, each of them responsible for a certain source
if we want to create some cross-database linking properties (e.g. on the
rtain field value equality), where the mapping A can not access the
ting class map that is defined within the mapping B.
count of the mini-university example in RDB20WL style, including the
€ generation explanation, is given in [18].
J

ef :ClassMaj
— cztm:mﬁ:uocsom:_man:nmEnmi id)

= ef isVirtual=true

source
mmmmnm, referredExpr

:ObjectPropertyMaj ; ,
Tlter="8 Registration ID=T RegisFalon 15" OWL ObjectPropert

gl |_:ExprRef localName="akes"

” alias=T

w = :ClassMa
bleRef referredExpr Eﬁm:m_.:nno:nm:_OcEmm_bo:amm_& target
2 isVirtual=true

Fig. 8. Linking through table: virtual class maps

iced mapping facilities

e been a few essential extensions to the core RDB20WL  mapping
of Figure 2 and Figure 3 necessary for the successful mapping definition
mentation the Latvian medical registries case. These mapping patterns go
> classical class-to-table, data property-to-column, object property-to-table
n (with filtering and Joining extra tables), as considered in Section 3. We
it taking note of these patterns may be useful also for mapping definition in
S, as well as in other mapping approaches. The extended RDB20WL
| is given in Figure 9 (with the extension classes emphasized using bold
(et further metamodel extensions are given in Figure 10 and Figure 12.
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). The exception link from a class constraint, if specified, list datatype
N perties not to be looked at when determining the property existence.
raints are semantically explained by deleting the RDF triples that do
irements and are obtained by the “raw triple generation”,
medical registries example we have used only class constraints that are
he OWL class level; we note that in the example 54 out of 172 OWL
a corresponding class constraint and 514 out of 814 OWL datatype
g to such constrained classes.
nstraint class instance attached to a property p invokes the checking,
; (mode=Src) or object ¢ (mode=Trg) resources from a <s,p,> triple
A Classiiap e B < ,.am.naﬁm., .m.&%:ﬁ.: > (or <t,’rdf:type’, p.range>) mm:namﬁa by Eo
e el [reqi(inOutAny) | ‘ esent in the RDF triple store). Note that the property constraints with
not defined for datatype properties. The semantics of a
aint is defined in terms of deletion of all property triples that do not
e ClassConstraint optimizations have been applied).
such a property constraint may appear essential in conjunction with
use (there is such a case in the sugar diabetes registry mapping), or it
provide the constraints independently.
at the class and property constraints are part of the mapping definition,
® target OWL ontology. The meaning of these constraints is fully “closed
le the triple, if the additional context is not created by the mapping.

Mapping

fragment]
o : mName:String

Database

dbName: wi_._m. ADB
connection: String [S

l

AuxTable

dataSQL:String

View
defSQL:String

0.1

0.1

1|source 1|target 0.2

[ 3l

PropertyMap

1 XSD Datatype DatatypePropertyMap |

description:String expr: ValueExpression

datatype

SQL Datatype
typeName: String

Fig. 9. Extended RDB20OWL mapping metamodel

5.1. Subclass conceptualization

ua schema extension
One of the essential differences between the OWL ontology Aocsnmw. | ,
RDB schema is the use of subclass relation. By subclass oosq.s,..m
understand a mapping pattern where a single a.mﬁmgmo table, mmw\ oG
several classes Cl1, ..., Cn in the ontology, with each .Om EJ M asse
certain group of fields (columns) in T. A MNSQMMQ vamwﬂm_wmwwomwn
lasses Ci, adding to
would be to map T to each of the c "
ilteri iti i ly those records of T corresp
filtering conditions stating that on . A
where Wﬂ least one field within the T field group Em.ﬁ oo.ﬂnwvosamw Mw M_” ma.
i ici istri S instance: D reg .
s with o tham 7 Homaw::@m mx%“mﬁm%ﬁ%my info  groups Wil Operty map (out of 832) whose momEEom would benefit from the nested
ot i, B oscs tan ouw :EMME:% Given such a configuration | tion; there have been no need for grouping and aggregation.
responsible for more than ow &mmo:: to write and especially to ¢ : tables can b used H.GOw w.o_ ding interedias cepafation gl fhos
oo:&mo& cwmoEw ﬁoﬂwﬁﬂw%mﬁ“w?ﬂw metamodel a ClassConstraint ¢ in RDF triple generation in case of more complex RDB sthim i
We introduce in a3 8 :

i i : <x,’rdf:type’,0> tri .
those » it have 2. .J:oé_smVRM“_MMHMSM.H%M%MM@%:: h.mw“w&:uc tion. We note that there have been no need to use temporary tables in
those x that have a triple <x,p,y 3

A class constraint may be attached to mw OE &mmmwo, BMU .
generated instances x (i.e., the Ax,umawaﬁ.o ,0> Ew_omlv m<oﬁ o3
existence of property p instances for incoming @.. \m:%mlow, outg ; qm
the default) or any (incoming or outgoing) properties. If a class constra

i i i at are created in ace
to a class map, then it applies only to class instances th ;

mapping can include references to auxiliary databases, as well as
d auxiliary tables (permanent auxiliary tables or temporary tables).

istries example: a Numbers table, containing the only column N storing
umbers from 1 up to 1000, and a NewCodes table (in fact, several tables

s ud 1
3 There are different groups of measurements taken during a MMHHW :
i dc)
measurements are recorded into a single table; however, the concep .

, Wm gate CSOQODM QMHQOZV nto HN.UWNng metamoc (&)
ts be ong . d
um rent groups to add a regat w,
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of this kind) to store classifiers which have c@o.u Embnmna.
definition process and which have not been Hm.oomENma as Qmmm_m: :
database (in Section 5.4 the DTreatment table is of st\ﬂe&mmm SEn :
Joining a data table to linked Numbers table is useful in situation
value is to be split into multiple datatype property <m_:nm“ H.hn b‘;
column ManyYears whose values are non-separated 4-digit year
<198820022005). The datatype property map (A, Numbers; len(
@%\H?Si:%«g%@%magQ/: )¥4,4)) splits .omnr of Emmo. va
appropriate number of datatype property assertions, each nwmnnﬁw,m
within the year sequence. We note that this mapping pattern is used f

columns in 111 datatype property maps in Latvian medicine registrie

TableFunction .
name:String M—i
t
™

Reference

alias: String [0..1]

resultExpr:ValueExpression

ValueExpression o Gz
Jatatype: SQL Datatype | * opName: String <}

Fig. 10. Table functions (a mapping metamodel fragment)

5.3. Table functions

The table functions (see Figure 10) allow wrapping mmaim a Wx.on ,.
filtering expression and datatype property value expression info as
In case of value splitting with Numbers table mHoB previous section, @
(an instance of TableFunction class) could be defined to refer (as a
to Numbers table, it could have a single argument X n.pm Enmwn._
resultExpr=substring(X,(N-1 )*4,4). The usage o.m the split4 functic
example then would amount to the simple call %r&t&n:&%&i ). !
The semantics of the use of split4(Q ) in a value expression v in the ¢
table expression e involves the extension .0m e context by the N &
expression el that has e as its sub-expression rmm. to be oa.mﬁa, the |
have to be adjusted to avoid clashes), and o<£cm.:5m of v with @.ms.
argument X in this extended context. H:o. precise function applicati
although intuitively clear, are yet to be precisely mwmzwm out. i)
The table functions can be defined also for e.g. Qmmm_m@ value
source database, thus possibly allowing Qowﬁ:.m. mc_umﬁmn.zmzw
specifications in the databases that rely on the classifier encoding.

-

5.4. Using meta-level data

Figure 11 informally depicts a mapping between a %:&.ummo table P
OWL class PrescribedTreatment, where five Boolean fields of the d :
mapped each onto an instance of EO@QQ &Sw&&ﬂ&amﬁ&:. An
PrescribedTreatment OWL class has a diabetesTreatment-link to
DiabetesTreatment with &mhml%no:uﬁomﬁagam. X ma:.am for A,B,C
ever the TreatmentFieldX value in the corresponding PatientData table re
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<<DBTable>> | DB table

ata <<OWL Class>>
5 Integer(10) OWL class | PrescribedTreatment
.
:Boolean i
eldB:Boolean i
ieldC:Boolean diabetes Treatment| * 1 - TreatmentA
D:Boolean 2 - TreatmentB
ieldE-Boolean DiabetesTreatment 3 - TreatmentC

code:Number

AL 4 - TreatmentD
B description:String

5 - TreatmentE

Fig. 11. A “field grouping” mapping pattern example

n auxiliary table DTreatmeni(Code,Value ) and place the data
A), (2,TreatmentB), (3, TreatmentC), (4, TreatmentD), (5,TreatmentE) )
| as create a class map that maps the DTreatment table into the
ment OWL class. In the “standard” approach, five object property maps

e for each of TreatmentFieldX columns, creating the diabetesTreatment-

esTreatment instance with description=TreatmentX from correspond-
Treatment instances. An example filter here is ‘TreatmentFieldD=1
the conditions are similar for other four cases, as well).

h based on using meta-level data involves creating an auxiliary table
! ‘Code, Value), where the PatientData table column names are recorded
ith the codes of respective DiabetesTreatment instances. The table Qmﬁm
(1,TreatmentFieldA), (2, TreatmentFieldB), (3, TreatmentFieldC)
ieldD), (5, TreatmentFieldE)}. The single object property map mOa,
ment is then built as follows: (PatientData S, DTreatment T,

M; lookup(S,M. Value)=1 and T.Code=M.Code), ,

i s of the user defined function lookup(A,C) with A being a table name
n, in the context of a particular table A record R is to return the value of
é:omm name is stored in C. Such a function can be easily implemented
)L engine means (the evaluation of a user-formed SQL string).

B20WL metamodel the lookup-expressions are defined to form a new
oundExpression class (Figure 12).

ression {ordered}

.%@D_. T e = Compound Expression

Lookup
opName: String

Fig. 12. Meta expressions (lookup).

¥

mentation and experience
I

ntation of RDB20OWL mapping language has been based on mapping
ves stored in a RDB schema (we call it mapping DB schema). Figure 13
memH mapping DB schema implemented in our approach. The current
ition supports only single table class maps as well as class constraint and
straint definition only on OWL class and OWL object property level. The
.ﬂ_u_m functions and meta-level data usage is also under development.
implementation schema the datatype and object property maps
ly “see” the tables referred in their source and target class maps; the
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additional tables, if needed, are introduced via the SEQMMMM..;
filtering expression in the object_property_map R&_m omw: wo A
equality of source and target column expressions. W_w W@NO‘ ¢
metamodel as OWL ontology enables o.mSE_mrEm an :
the mapping implementation DB .m:a its ooconw.ﬂcaaoa% ogy,
methodology for a precise explanation of the mapping database

in [2], have a greater freedom in choosing means for mapping
implementation; including the freedom to use temporary tables in
finition, if that is necessary or convenient. The SQL-based implement-
ings, as noted already in [2], allows for easy extensibility of the
) in the case of specific needs in constructs in the future.

trast to [2], we consider the mapping clarity and simplicity to be a
of our work. Clearly, the concrete syntax is to be defined for that,
oncise metamodel-based mapping structure presentation, as well as the
anced mapping specification constructs we are proposing shows our

N [ 0BJECT_PROPERTY_MAP

[Fipp_pATABASE

DATABASEID | TABLE.LNK.D R , i ncise, well structured and readable mapping specifications.
,nc.__,._”_wmmmq..mon>3m ~<NEXT_TABLE_LINK_ID e e el f v N

> - OURCE_COLUMN_EXPR | 7 <TARGET_CLASS_WAP_ID

i ! 1 1

€ possible to translate at least a large portion of the RDB20WL mapping
onstructs €.g. into D2RQ or Virtuoso RDF Views notations (there may
S translating temporary table usage), however, we expect a significant
crease at least in the case of subclass conceptualization constructs (the
er expressions are to be automatically generated during the translation).

TARGET_COLUMN_EXPR W
A | FILTER_EXPR

| FLTEREXPR

!

!

'DB_TABLE_ID o .

TABLE_NAME !

IS_TEMPORARY i

Tuo_uc_nb._-_cZImDr i

ID_COLUMN_EXPR !

DATABASE_ID ]
|

-
£ pp_COLUMN
DE_COLUMN_ID
DB_TABLE_ID
COLUMN_NAWME
wwo_.nc>4>._.<vm|_n

v

Loérln;mml_c
AAAAA DB_TABLE_ID
INSTANCE_URI_PREFIX
ID_COLUMN_EXPR
|GENERATE_INSTANCES
[FILTER_EXPR

)
|
L ==CLASS_MAP_ID |

i e i
EIDATATYPE_PROPERTY_MAP
DATATYPE_PROPERTY_MAP_ID >
xxxxxxx ~<TABLE_LINK_ID

D_DATATYP pyiiogs - we have demonstrated a simple and practice-oriented approach to

SR Lo ﬁm%ww.ﬁﬂw | lional database data into RDF/OWL format, by offering a MOF-style
mewmwbwnwv T TveENAME 15, COLUMN_EXPR

4,
!
!
, P! | ' E_COLUMN_EXPR
| ATYPE_ID SOURCE _
— . LS Lxmn-uaz.%mu_o.

" declarative specification of mappings and implementing the mappings
1g them into SQL scripts that are executable by an SQL Engine. We
) on the successful application of our mapping approach in semantic re-
of Latvian medical registries.
utlined a few mapping construction patterns that would be good to have

RDB-t0-RDF/OWL data mapping/integration frameworks and that have
e attention elsewhere. The subclass conceptualization can be mentioned
mappings using source DB schema elements on the object level.

work is to develop user-friendly concrete syntax of mapping
on the basis of the RDB20WL framework, with the aim of making the
- : , mapping specifications easily accessible at least to a technically min-
well as source DB (Medicine DB) imwwww?ommwwow\wwﬂww MN.MMWOWW id to the extent possible also to subject matter experts. Given the clear
triple generation process from source @U 5 ° .ﬂmﬁom for raw triple generati the created RDB20WL metamodel we deem this to be a feasible task.
has Swms.w,\.m SRR tes, out oﬂwrﬁ%ot&“i enforcement and 6 min interest is to develop RDB20WL as a readable mapping specification
for indexing, 4 minutes H,oﬁ. m.az TRIPLE format (total file size 3. ll it would be interesting to see, how our approach could benefit from
exporting from table to text files in N- b mapping discovery techniques, presented e.g. in [17] and [19].

ay be approaches other than SQL script generation for the RDB20WL

ementation. We have noted a possibility of translating RDB20WL
10 other RDB-to-RDF/OWL bridging approaches. An interesting work

0 translating RDB20OWL mappings into MOF-style model transforma-
0 higher-order model transformation language, e.g. Template MOLA [20].

Fig. 13. The mapping DB schema X

The data mapped from RDB to OWL format consists of 6 w_\m?_m% T
[91,[10], including 106 source database tables, 1353 table co :%dﬁ ng
3 million rows, altogether 3 GB of %S..H:w oowamvo:aam@. ¢ .
OWL classes, 814 OWL datatype properties and 218 OWL o _no.n” fm

The mapping has been implemented on m.:%ﬁow ooBWMMH,MH;w
2 Duo T6570 processor running Windows Vista, 3 GB o y 4.4

7 Related Work

The core constructs of RDB20WL mapping E:m:mmwoﬂwh in Mno
common to most of the :oémam&\m. used wa‘ﬁo-WUm A HM _W@
including R20 [2], D2RQ [3], Virtuoso RDF <6<<M mm_cms.a i
acknowledge that most of these approaches (e.g., [3], w__“ m: M_mﬂm

of retrieving the data from source RDB o:-ﬁ:w-m% when the 1 o
queries in a RDF model environment. This has not been a requ ]

gements. We would like to thank Sergejs Rikacovs for providing us with
| explanation of the RDB-to-RDF/OWL mapping requirements for the
iedicine registries.
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major languages such as English, French, Spanish, Chinese and Arabic, B The Web Ontol
languages are often lacking enough parallel corpora to build moo@uw ntology Language (OWL), a W3C standard, is a state-of-

q to achieve this.

systems. Pure SMT methods [1] [2] are not using any linguistic informatic provides

information about morphology and word inflections. As a result of tha d ,moacnﬁw.m MH nmwwmﬂommo%o%wwma w.av;zoam and specify the meaning of the
systems perform better éoaa:m. /SE. Homm.ﬁ Emmoﬁm languages, such as is and by providing the :owao q w Mm:,wm Hm éo:-aomboa. structure on OWL
E.o% @o%oﬁa much worse working i_.E.EmE% inflected languages, such 1. [ short, OWL can be aom m_uma\ and semantics for achieving the
Finno-Ugric languages, and more fraining data are Hﬁoao.a to achieve B in 2 world and the Rﬂmﬁwmoﬂ_oa as a means of specifying at least
of MT quality for highly inflected languages as for lesser inflected lang B ther. process: involvi ionships c.ogowb them. The processing of

The modern SMT methods are using different additional knowledge ns external to the ontolog mzoMEm some intelligent aspects is done by
sophisticated statistical models thus improving MT quality. Typically mor br, mot all concepts are owrm: oww Howmﬁmnaﬁ
and syntactical annotations are added to tramning @wﬁmu mba. SMT sy B s structure is ptia %w mw _o mmﬁ.ﬁ. One of Eo.ogomﬁm that are
translation and language models which benefit from this annotation. T many purposes, such m.m e Hﬂ alinaitend spatial reasoning are
of such SMT methods are factored phrase-based SMT [3], tree-based B And spatial Eoﬁamamwoﬂw@mmw_omaﬂawgs systems, spatial
treelet SMT [7]. b i ; ant also for word sense

Rule based MT systems use rules and knowledge in different lev : .m__memnwmhwmowamowmmﬂswawmwﬂmOﬁ . b iha O./SL is not capable of
some systems deal only with morphology and shallow syntax, others A or reasoning and E_.m s M 1t 1 not designed for this type of
syntactic analysis and some systems use even .moBm:no. analysis. B and to be able t rather a_m.mocz to express some spatial
o:ﬁﬁ.&% are using only Bo%roﬂomﬂo and mﬁ:m.og Emoﬂbm:ob. B 16 doscribed in OWL ms.mo a@mm%b @E these concepts.

This paper presents ongoing research which is EEEm.S EE 5 B WL implicitly have mmm Bﬂ. o_o:os of the real-world around us,
knowledge to mH.SH. MT systems oo.cE @oﬁo.mw from various WE%. of low expressing the spatiality of th patial property. Yet, the OWL language
knowledge in various stages of translation or fraining processes. Semantic | SOLIM project: to expand th ose properties in a useful way. This is the
might be used in word breaking, part-of-speech tagging, syntactic disa xpression of spatial .Eo " nmvo e OWL langue to allow for meaningful
word sense disambiguation etc. All mentioned areas are clearly &m.mb,.. S B cribes the mwﬁ owm.amm .
cmwom 7.\5, systems, but they are somewhat vague in SMT. Hrﬁm is N0 W e 070 types of aspects HM:%M : momgm.m that the SOLIM language
disambiguation oo.:.%oboa in SMT, .@E mv\S, models are built so that ke form of coordinates, geo re mmaa ing spatiality - the m@.mor:o location in
with word ambiguities. Although various kinds of semantic knowledge e location is ozvd\ defin ao:ow.m etc. and the relative spatiality, i.e.
to improve various translation aspects, such as word sense disambiguati B e oeraphical coordi ed as binary Eowo._‘:om between concepts or
selection or phrase reordering, this paper is focusing on using of spa d using MT systems, relative a MISIGY B ot a@om_ for texts which are
for word sense disambiguation in factored phrase-based SMT. Sp 1 ’ spect of spatiality is more important for MT

Janguage developed in SOLIM! project is used to implement spatial. -~ e v .
: wmmMﬂWm with m.:m. about spatial properties, the question is raised what the
of sp or spatiality mean. Even though an exhaustive answer to this

In addition to this introductory chapter, this paper is divided info §
chapters. In chapter two, a brief introduction to SOLIM ontology fan " |
. 1 , 0 | :
implementation of the ontology is presented. Chapter three presents Integra 3 RS A D e R e
spatial ontology in SMT system. In chapter four current results are pres spect of s
| . : pace relevant for the SOLIM langu i i
{ o m
Spalial O outlined. . . %ou of ._uoﬁr absolute and relative locations mdmﬁ a mmMowwmwaMom wamm%.w o
A 1 1 m
8:”5“05%”9 mw%o,.oﬁov Such basic definitions of space in OWL m\oﬂm
k> EM <m%m. t m constraints and properties of objects and is not explicitly
E aamaawwcom.owwwwoww__uw. Hr% mmuh;\_ project defines a language that
. . ute and relative spatial properties, and —
,w_..wwwwrm Rvaommﬁmcg of mewoc Connection Calculus MVWOQ“R_Mmosmmm ’
- Wumvwmm OM Mﬁmwﬂﬂm&mﬁ_osmrwﬁmu and an often used set for Em:.ommsmsm
latio e -8 calculus. However, RCC-8 i i
A , -8 is not
“ cmam%hﬂﬂ&o@ _mmmcmm@m because it requires certain adaptations of MMMW\
project is to extend the language of choice; OWL, so that it oms.

RCC-8 relationships is 1 i
,.Aq, o ps properly. This involves an adaptation of the OWL

2 SOLIM Language and Ontology Implementation

Spatial information, as well as information in general, is mostly implicit in
character is descriptive and meaningless without its most skilled inter
human brain. If we want to use spatial information to train better SMT m
this information should be described in a machine-readable way that enab’
agents to at least act as if they would have some understanding of the &

e

I SOLIM project. EUREKA's Eurostars Programme. no.: E! 4365. http://www.solim.g

-
i
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In considering possibilities msa. ﬂm@swnﬂmam. for a oo:“wnn:m:
scheme for spatial representation, it is ommoﬁnm_ to Eooﬁo.a.:a om ,4. ye
that has been carried out niBm:_% 2:35 Eo. Qm&ﬁoumw? :
representation. As a starting point MO& Emo:mmﬁn ﬁ% take g
developed views of spatial relationships: the Region _ou.n@..w "
proposed by Randell, Cui & Cohn [8] N.SQ the ,moﬁ of H.ovo o_%mw ]
by Egenhofer [9]. These involve .mSS:m basic spatial Wo ationship
between spatial entities and working out ways of bot Mommo
applying them to complex spatial configurations. >_§ocmr Sgenh
relations in purely topological terms and draws on set Hﬁ oodm :
points) for definitions, while Randell et m:. draw on a topo om._% of reg
parts and start from the connection relation alone, there are ormwn s .
them. Their ontological commitments are, however, somew at dif :
the particular kinds of spatial objects assumed. The relations propos
Fig. 1. with the names employed in both approaches.

_———“h_—————___ ————“— R2

language (in terms of connection and parthood), the computational
formalization is not good because of its expressiveness.
first-order theory of RCC inherits undecidability and so various, more
idaptations of the full theory have been defined. Within qualitative
g, therefore, formalizations of spatial relationships that draw on the
ies of other mathematical accounts is a very active area. By this means,
achieve more attractive computational properties that are more
ctical reasoning tasks. This also appears motivated cognitively in that
e readily performable by humans and others less so; such evidence can
the kinds of modeling decisions that may eventually be made in
| realistic ontology of space.
ibed by Katz [10], RCCS logic can be expressed in OWL DL with the
f reflexive roles. Reflexive roles are required since the main property
press RCC relationships — the “connects” property — has to be reflexive
on is connected to itself. With the emergence of OWL 2.0, reflexive roles
le and therefore OWL2 is sufficiently expressive to allow the formal
RCC relations.

RCCS8 relationships the following translations (see formulas 1 to 6) are

VR.X C3R._Y
B =xnYy M

EC DC lationship is slightly more complex than for example DC (see formula 2)
ormula 5) as it involves the creation of two named classes (R and Zs).
are defined as follows:
i€ class consisting of the points that only connect to X (the interior of X)
RA1 he class consisting of the points that have at least one connection to the
de Y (the complement of the interior of Y).
more, the first of these two classes is expressed to subsume the second.
express external connectedness, the region outside Y has to contain the
R1 R2 R2 ,
X C Y 2)
NTPP EQ )
o . A Xcvy
i ‘base relations” of RCC and similar calculi: disjoint/dise : ,_ i .
BM—@@M%Maﬂommm_%%mmswmwmgu overlap/partial overlap (PO), mumwa_ﬂm_. QwOWw MMMMW 5 Zy=XNn3R. Y G)
proper part (TPP), inside/non-tangential proper part le Mwwv. Emwnwwww-ﬁmum. 2
not shown: covers/tangential proper wm”%m,\oo%%www C.vu 4 _¢.. 1 ﬂv - XC VR.Y “)

n formalizing them, both .%Eomor.om Bm.Wm central use of th 1 s
WQ_MMWMmEv of oosbw%o: and aﬁmom:u.\ .womE their accounts AﬁHmw e 1 V Y=Y -
the distinct ways in which spatial entities can be related spa mm y:
these standard eight relations. There are, voéméﬁ a number o ﬁém%wow
this view of spatial entities and Em.ﬁ SHm.E.u:m. While Eo Boao% M%n.u ;
common in ontology begins by axiomatizing the relations and their pre
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Z, =VR.XNVR.Y
PO(X,Y) -] Zz3=Xn-Y i
N,A,MJMWDW\ 8

vel is n.Bmz% driven by general syntactic
how up in morphology, etc.
‘ _ IS a statistical machine translation system that allows automatic

ation models for any language pair. All i i
; you need is a collection of
(parallel corpus). Moses has the following distinct features:

,.‘.mH.oF an efficient search algorithm finds quickly the highest
slation among the exponential number of choices;

ased: the state-of-the-art in SMT allows the translation of short text

principles, local agreement

Ontology implemented in SOLIM language allows representing spatia
about different object and inferring implicit spatial information.
project partners are evaluating suitability of SOLIM language for machi
and for image search. The current implementation of ontology for mac hine
contains spatial information about all continents, countries and majo
English, Latvian and Lithuanian. Reasoner can use the ontology to
relations between objects. Reasoner has web service interface allowi
applications to query it using SPARQL query language. .

ored: lexical units may have factored re i

speech, morphology, lexeme classes...). oy, on (s fos,
: éozn.a an extension of the phrase-based approach. It adds additional
3 d,.&o lexical unit level. A lexical unit in our framework is not anymore
@E a vector of factors that represent different levels of annotation. The
(a parallel corpus) has to be annotated with additional factors. For
L 1S necessary to add part-of-speech information on the input and o.cn::
tof-speech tagged training data are required. Typically this involve
The proposed MT system is based on statistical machine trans atic tools on the corpus, since manually annotated corpora are r. M
translations are generated on the basis of statistical models whose p: 0 produce. are an
derived from the analysis of bilingual and monolingual text corpora. The | : ed SMT system is based on the Moses SMT system, which featu
statistical model generation is called training, and typically involves anal ation models that allow integrating additional layers omamﬁm ti rMm .me
amounts of parallel sentence pairs in two languages (bilingual corpus)  of translation. The translation process translates the source Q% W\ Ms g
generate a translation model, as well as analyzing the target language ( : .Aoc_ﬁ:ﬁ\:msm_waobv using the trained language and phrase QSMMV”. o
corpus) in order to generate a language model. 1 ¢ Fig. 2.). The system output is then compared with a reference (h —

The translation model represents a certain statistical model of ho evaluate the translation quality using automated metrics, such as Mﬁmﬂ
language (L1) is translated into a target one (L2). The translation model ’
the domain of words, phrases and more complex structures (for ex
trees), and in general is responsible for the adequacy of translation. The
model represents the knowledge about the target language, its sentence ar
structure and is in general responsible for the fluency of translation.

The current state-of-the-art approach to SMT, so-called phrase-based mi
limited to the mapping of small text chunks (phrases) without any ex 5
linguistic information, may it be morphological, syntactic, or sem :
additional information has been demonstrated to be valuable by integra
processing or post-processing. However, a tighter integration of linguistic in
into the translation model is desirable for two reasons:

1.  Translation models that operate on more general representa
lemmas? instead of surface forms of lexical units, can draw on richer stati
overcome the data sparseness problems caused by limited training data.

2. Many aspects of translation can be best explained on a mor
syntactic, or semantic level. Having such information available to the
model allows the direct modeling of these aspects. For instance: reorderir

3 Integration of Spatial Ontology into SMT __

Language
models

Moses Postprocessing:
decoder Detokenization

ntic analysis Capitalization

Output text

Phrase
models

Fig. 2. Translation process.

ining process (see Fig. 3.) involves processing a parallel training corpus to

2 ] emma is the canonical form, dictionary form, or citation form of a particular phrase model and a monolingual training corpus to generate the language

form), for example ‘read’ is a lemma of surface form ‘reading’.
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ing works with the output of Moses decoder (translation target
ert it to orthographically correct text. It involves the following tasks:
ation (gluing of tokens to comply with orthography, e.g. no
comma);

rocessing (e.g., capitalizing the first word of each sentence);

Preprocessing:
Source language Tokenization

T\v Morphology analysis

Semantic analysis

ce gluing.
Parallel ate Wmm cmg integrated into the SMT system as additional factors on
e Preprocessing; target language side. By factoring semantic information into the
%MﬂoaNmaoz the translation accuracy is 5%8.,6& by H.@mn_ism mme.sno
r\\v hology analysis source language. Similarly, by factoring semantic information into
Morpho ey T L ge, the translation fluency is improved by resolving semantic
Target language Demantiy AuAlEs target language. The use of factors implies a certain tag set for each
text will be analyzed and tagged with the information from a
inferred by the semantic reasoner. Semantic factors, or tags, will be
h relevant token in the input text. One or several tags can be used,
e particular ambiguities that are targeted. For example, an English
orgia is ambiguous. It might refer to the US state or the country in
on. Consider the following ambiguous sentences in English:
Preprocessing: he president of Georgia visited Lithuania yesterday.
Monolingual Tokenization are h&&:&:ﬂﬁ Nw.E.:N in Qw.c\wa.n and other mBNma..
corpus Morphology a nalysis cent aw:l ruling gives Georgia, Alabama QSA& Florida three years to resolve
: { onflict over use of the water Jrom Lake Lanier.
Semantic analysis 1s have failed to travel to Georgia at the Thilisi international airport.

\% = rbaijan has bad relations with Armenia, so it cannot afford to have such
elations with Georgia.

president visited Georgia last month.

Target language

ious that in examples 1,4 and 5 Georgia stands for the country, but
d 3 it stands for the US state. Example 6 is very ambiguous and it is
termine what is meant by Georgia without a wider context.
I SMT training methods without tags to train translation models on big
el sentences results in Georgia translated by several different Latyian
valents with different probabilities. The results are as follows:

Fig. 3. Training process.
. s . .‘4.
Text pre-processing is used both for training and translation ﬁwmw”.
both parallel and monolingual training corpora are preprocessed.

translation probabilities of word Georgia.
the input text is pre-processed in the same way as for training.

; ; Latvian probability
. s:
Pre-processing Eo_ﬁaom the following step _ Gruzija 045
o Sentence splitting; . lation Dzordzija 0.42
R L smallest translation i
v Tokenization (splitting ow. text Hﬂﬁw_mwﬁn : ‘ Giziia 0.08
; iti tuation sym > )
ords, multiword entities, punc . tence):
" Case processing (e.g., lowercasing the first word of sentence) Tibilisi 0.001
< Morphologic analysis (optionally);

2 translations with a quite high probability, these both are valid

The first is a translation of the country Georgia, the second is a
the state Georgia. Other translations are with very low probability and

>ITOTS In training data.

bilities are calculated for phrase translations some more hints could be

Semantic analysis (using the semantic reasoner to augment npu
tic factors). . . :
mmﬂ_ﬂwﬂ EoEm:W: of morphological and semantic Mﬂﬂ%m%wu m.H,
characteristics of the source and target languages and oa mDM N
Separate pre-processor must be implemented for the sourc lang
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Table 2. Simple translation probabilities of phrases containing word Georgia.

s

ave failed to travel to Georgia at the Thilisi international airport

,_,wexwa.n can be tagged NTPPi. Thilisi because it can be derived from the

English Latvian mﬂwgg:% 1e is a relation NTPPi between the two lexemes Georgia and Thilisi.
President of Georgia QM:N:WM presidents o.m mning data annotated with such tags will lead to better translation
Georgia Bulldogs Dzordzijas Buldogi . vhich are context dependent. The following results could be obtained:
; Dyordii : 0.000003 v
ident of Georgia DzordZijas presidents L. : - .
MHEQMQME MEW phrase president of Georgia will be almost sure ored translation probabilities of word Georgia.
s : ;
Gruzijas prezidents and not Dzordzijas E\mﬂm_mim and Qmoxmi Bu T T
surely translated as DZordzijas Buldogi not Gruzijas w:ﬁo%r It can Gruzia o
neighboring lexical units in the context can help to &mm.Bgmc.mﬁ EMH e i 0.8
Tags can be also assigned to ambiguous lexemes fo be &mmagmcﬂo <8 B Grozia By
of speech tags are used in factored SMT. For example, if translation % Dzordzija 0.8
an English lexeme fish are calculated, the following results might be o F Doacsiia 05
Bs Gruzija 0.4

Table 3. Simple translation probabilities of words. . — e e .

rgia is Gruzija is 0.7, given that there is also a lexeme Armenia in the

English Latvian Mamgc:@ and there is EC relation between the two lexemes Georgia and

Fish zivs : the ontology.

fish zvejot 0.1 bed approach is still probabilistic and not knowledge-based. As it can be
= 0.01 he Table 5, the fact that there is an NTPP relation between the two

fish ps - gia and US which are in the same sentence does not mean that Georgia

But if lexemes are tagged with part of speech information then

lated as DZordzija. US might be equally often used together with state
results might be obtained:

country Georgia.

n must be performed both for training corpus and for translation input.
> translation process the factors provide additional information to the
hich helps to choose the appropriate translation equivalent. For annotating

Table 4. Factored translation probabilities of words.

English Latvian wnwgg:@ necessary to derive the information — the relevant tags, form the spatial

fish|N ZNE 0.5

fish|V zvejot 04 firstly, the ontology must be able to be queried for all the ontological

fish|V makskeret ist of them: e.g. GetdllSpatialObjects: a query to the spatial ontology.
hIN Eum 0.01 od returns a list of names.

fis

, affter all the relevant lexical units are identified and marked in the texts,
ary to derive further information from the spatial ontology (relations
tified lexical units), e.g. GetSpatialRelations(4, B): a query to the spatial
get knowledge from it. This method have 2 parameters (names of spatial
1 spatial ontology) and returns a list of relations inferred by the spatial
it does not state anything about the nature of relations that are false or are
For example, it is important to know, that Thilisi is a city and it is a city in
eorgia NTPPi Thilisi). This information can influence translation results
be used in the training process.  Another query
elations(Georgia,Armenia) returns the relation EC only if there is enough
tion in the ontology to infer this relation (using open world assumption),
he query GetSpatialRelations(Georgia, Latvia) returns the relation DC if this
can be inferred (using open  world assumption)  and
Relations(Georgia,Lativa) returns nothing if there is no enough
n in the ontology to infer DC relation.

The second table is more precise and more useful in translation, becai

i ilities.
context dependent and more reliable Eogv_
Other %@om of tags can be also used to improve an SMT system. There

ways how lexical units can be tagged with the Emﬁ.ﬁ.bmaoc.ogmwn.oa from the
ontology. For example, if there is a sentence containing _chm_ units X wna }
information about a relation Z between X m:@ Y can be obtained @oBM om,w
base. then the lexical unit X can be tagged with tag X(Z. Y). For example,
sentence

Azerbaijan has bad relations with Armenia so it cannot afford to
relations with Georgia E

a lexeme Georgia can be tagged EC.Armenia because it can be aw:ﬁ& i
ontology that there is a relation EC between these two lexemes Georgia and 4

If there is a sentence
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s
.

4 Current Results and Future Work

This paper presents ongoing research. SOLIM spatial ontology languag
project is specified and implemented. But it is in evaluation stage nc ‘
altered depending on evaluation results. Use of SOLIM langue
translation system is one of its’ evaluation scenarios, other eval
related to image search. Spatial ontology containing information abe
countries, USA states, world’s major cities and all populated pl
Lithuania has been implemented and tested. There is a reasoner cre
ontology, and it is available throw a web service interface using ¢
language. SMT training and translation processes have been adap
system can use reasoner to annotate SMT training data and to pre
sentences. Test SMT system has been trained, and it is ready for ev
elaboration.

Currently we have SMT system which is enriched with semantic
a spatial ontology. Spatial knowledge definitely gives an improy
system. But this improvement has to be formally evaluated usi
evaluation metrics, such as BLEU score [12] or HTER [13]. Current
of ontology integration uses all spatial relation which we can get fro
but it is obvious that different relations have different impact on tra
Impact of each spatial relation needs to be evaluated and optimal com
to be found. Spatial information is just one type of semantic knowledge
added to SMT system. Enriching SMT with other types of seman
coming from other types of ontologies is also a perspective research dir
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