Michal Smialek

L

10.

11.

12.

13.

14.

15.

16.

17;

18.

19.

20.

21.

22.

23.

Sutcliffe, A.: On the inevitable intertwining of requirements and architecture.
Lecture Notes in Business Information Processing 14 (2009) 168-185

Barber, K.S., Graser, T.J., Grisham, P.S., Jernigan, S.R.: Requirements evolu-
tion and reuse using the systems engineering process activities (sepa). Australian
Journal of Information Systems 7(1) (1999) 75-97 Special Issue on Requirements
Engineering.

Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Information and Software Technology 45
(2003) 993-1009

Moon, M., Yeom, K., Chae, H.S.: An approach to developing domain requirements
as a core asset based on commonality and variability analysis in a product line.
IEEE Transactions on Software Engineering 31(7) (2005) 551-569

m\b&&owu M.: From user stories to code in one day? Lecture Notes in Computer
Science 3556 (2005) 38-47 XP 2005.

de Boer, R.C., van Vliet, H.: On the similarity between requirements and archi-
tecture. Journal of Systems and Software 82(3) (2009) 544 — 550

Du Bois, B., Demeyer, S.: Accommodating changing requirements with EJB. Lec-
ture Notes in Computer Science 2817 (2003) 152-163

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. Addison-Wesley, Reading (1992)
Object Management Group: Unified Modeling Language: Superstructure, version
2.2, formal/2009-02-02. (2009)

van den Berg, K.G., Simons, A.J.H.: Control flow semantics of use cases in UML.
Information and Software Technology 41(10) (1999) 651-659

wamme M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.: Com-
plementary use case scenario representations based on domain vocabularies. Lec-
ture Notes in Computer Science 4735 (2007) 544-558

Kaindl, H., wgw&mwu M., Svetinovic, D., Ambroziewicz, A., Bojarski, J.,
Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J.P., Mukasa,
K.S., Wolter, K., Krebs, T.: Requirements specification language definition. Project
Deliverable D2.4.1, ReDSeeDS Project (2007) www.redseeds.eu.

Smiatek, M., Bojarski, J., Nowakowski, W., Straszak, T.: Scenario construction
tool based on extended UML metamodel. Lecture Notes in Computer Science
3713 (2005) 414-429

m\ﬁm&mw, M.: Accommodating informality with necessary precision in use case
scenarios. Journal of Object Technology 4(6) (2005) 59-67

Mukasa, K.S., Jedlitschka, A., Graf, C., Klockner, K., Eisenbarth, M., Steinbach-
Nordmann, S.: Requirements specification language validation report. Project
Deliverable D2.5.1, ReDSeeDS Project (2007)

Domain Specific
Languages and Tools

~ Domain Specific Business Process Modeling in Practice

~ Janis Bicevskis, Jana Cerina-Berzina, Girts Karnitis, Lelde Lace, Inga Medvedis,
Sergejs Nesterovs

L. University of Latvia, Raina blvd. 19, Riga, Latvia
s y Girts.Karnitis@lu.lv

 Abstract. Experience of practitioners in modeling with Domain Specific
~ Languages (DSLs) is analyzed in this paper. It is shown, that unlike general-
~ purpose modeling languages (UML [1], BPMN [2]), DSLs provide means for
. concise representing semantics of the particular business domain that enable
] development of consistent and expressive business process models. Resulting
models can be used not only as specifications for development of information
~ systems, but also for generation of executable applications. Thus one of the
~ principal goals of Model Driven Architecture (MDA [3]), the development of
model-bases information system, is achieved.

- Keywords: Business Process Modeling, BPM, Domain Specific Languages,
- DSL, Model Driven Architecture, MDA.

j Introduction

perfect information system, which is consistent with all customer requirements,
le, easily adaptable and maintainable, still remains only a dream for IT
relopers. Main obstacle in the way to this dream is inability of customers, who
ly are not knowledgeable in information technologies, to define their
irements clearly and unambiguously, and to communicate them to the developers.
gﬁoﬁm_g information systems have been developed in compliance with some
dardized documentation, for example, software Ho@cmoaoﬁm specifications, but,
in practice, requirements, if they are formulated in natural language, tend to be

1 ate and ambiguous. The situation is even worsened by often changing

- customer requirements. All this places software developers in unenviable situation —

~ they must develop software according to inaccurate and changing specifications.

: A possible solution to the problem is to use a formal language to define
- requirements and to make a model for the system. This can eliminate ambiguity of
requirements, and can even enable direct translation of specification into application.
Thus, the problem of changeability of requirements becomes resolvable — changes can
~ be introduced into model, and then application can be generated from the model.

_ ~ However, despite decades-long efforts, these problems still are not completely
solved. Traditional CASE technologies have given only partial results (see, for
example, Oracle Designer [4]). Fierce competition in IT market demands information

_ systems of exceptional quality, and available support from traditional CASE

62 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

technologies is not sufficient to provide adequate user interface, high usability,
maintainability, performance and other quality requirements. Flexibility against
changing requirements is still limited. For example, if requirements are changed, and
these changes cannot be represented in the formal specification (because specification
language is not sufficient), they must be incorporated directly into the source-code of
the system, and, in case of automatically generated source-code serious problems can
arise. CASE tools are also quite conservative and slow to catch up the fast
development of the programming technologies producing new programming
techniques and frameworks every year. As a result, only a fraction of applications can
be generated from specifications.

IT experts are still looking for new ideas. One of the recent developments is Model
Driven Architecture (MDA [3,5]). In order to make application development more
flexible, this approach splits the process into two steps. First, the platform-
independent model (PIM) is made in some general-purpose or domain-specific
modeling language, for example, UML. Second, PIM is translated to a platform-
specific model PSM, thus obtaining an executable application. This separation allows
for more flexible generation of applications and development of user-friendly
information systems. MDA approach evolves very fast, but some challenges are also
at a glance.

General-purpose modeling languages, including UML, often used to make PIMs,
are difficult to grasp for non-IT professionals, the future users of information systems.
Even if they read and accept the models, their understanding is not deep enough, and
they undervalue consequences of decisions behind these models. Code, generated
from the PSMs, still does not produce usable and reliable software. Information
systems are not flexible, and it is hard to achieve compliance with the models. If
changes are made directly in the generated code, consequent re-generation can void
them.

Trying to follow the path of MDA often ends with UML specifications, that is just
one of the sources of information for developers of the software. Only in some
projects UML models are directly translated into software ([6]).

Facing these problems in the practice again and again, and having advanced tool-
building platform ([7]) at hand, we tried to solve them building domain-specific
business process modeling tools, according to the following principles:

1. Tools must be comprehendible to non-IT specialists, because modeling will be

done mostly by domain professionals.

2. Specific requirements of business domain and of information system
development must be taken into account.

3. Modeling of real-life situations in the business domain must be possible, as well
as ensuring and showing to users that information systems treat these situations
correctly.

We have made a graphical domain-specific language, which, we hope, can easily
be understood by non-IT professionals. This language is domain-specific: first, it can
be used only for modeling of business processes, and, second, it can be used only in
specific organizations. The language, called ProMod, is extended subset of on BPMN
(see Chapter 2). Language deals mostly with behavioral aspects of business processes
and applications and do not try to cover entire enterprise architecture as for example
ArchiMate ([8]) do. Key feature of ProMod is that semantics of graphical primitives

main Specific Business Process Modeling in Practice 63

is deeply specific for organizations where it is intended to be used. Business process
model is a set of diagrams, interconnected with tree-like structures of enterprise data.
Unlike many general-purpose modeling tools ensuring only syntactical correctness of
models, ProMod provides tools for checking semantic consistency and completeness
also. Consistency and completeness is checked with domain-specific rules — this kind
of checking would not be possible in a general-purpose language.

Narrow usage domain of ProMod raises a question of amortization of efforts, i.e.
whether the benefits gained are worth the time and money spent developing the
language. Using transformation driven architecture to build DSL tools can solve this
problem. We used metamodel-based graphical tool-building platform GrTP and it
enabled us to create both graphical editor and consistency checker in a reasonably
short time. This paper deals mostly with ProMod DSL — for detailed discussion of
transformation-driven architecture and tool-building platform GrTP see [7], [9] and

10].

H ‘“46 paper is organized as follows. Chapter 2 contains description of our business
domain and main features of ProMod DSL. Chapter 3 is a brief introduction to tool-
building platform GrTP. Chapter 4 discusses current usage and ideas about future
development of ProMod DSL.

2 Features of the Domain-specific Modeling Language

General-purpose modeling languages offer a fixed set of primitives: objects,
attributes, connectors etc., with predefined semantics, that cannot be extended, or can
be extended in some limited predefined manner (as, for example, stereotypes and
profiles in UML [11], [12] or styling of graphics and option to adding attributes in
BPMN [2], [13]). This kind of fixed notation is suitable for modeling in general, still
much of the domain-specific information is represented in unnatural way or even
remains outside the models. In the domain-specific languages we are looking for ways
to extend the set of modeling primitives with ones, specific to the particular business
domain ([14]).

2.1 Modelling Domain: State Social Insurance Agency

The domain, where we are looking for specific concepts, repetitive patterns and
clichés of business organization to enrich the modelling language, is Latvian State
Social Insurance Agency (SSIA) — a government institution, providing social
insurance services: pensions, benefits, allowances etc. Like in many government
institutions, all activities in SSIA are strictly prescribed by legislation and local
instructions, but, unlike most government institutions, SSIA is a client-oriented
enterprise — its main function is to service clients, and it has well-developed front-
office. Servicing clients in a vast majority of cases means processing documents: for
example, a client claims for some kind of social service and provides appropriate
documents, these documents go thru a workflow, and in the end approval or rejection
letter is sent to the client.

64 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

The domain of social security is sensitive sphere in Latvia and it is a target of
frequent political decisions and new regulations resulting in frequent changes of
information systems.

SSIA has recognized need for the management of business processes. Many of the
business processes have already been defined in richly annotated IDEFO ([15])
diagrams. Currently SSIA is planning to include business process models into the
instructions for the stuff and to use them as essential part of the requirement
specifications for the information systems. In the same time, as the numbers of
diagrams is constantly growing, and the diagrams are independent VISIO files, it
becomes harder and harder to keep them consistent and to avoid discrepancies. So
SSIA is looking for a ways to improve technology of business process modeling.

2.2 Overview of Language ProMod

ProMod is based on a subset of BPMN and keeps its more frequently used graphical
symbol: activities, events, sequence and message flows, data objects etc. These
symbols sometimes have specific semantics for SSIA. For example, occurrence of an
event means, that a person or an organization has brought a package of documents —
events are also color-coded to show whether they originate within SSIA or come from
another institution. Message and sequence flows always carry documents and are
marked as significant (bold arrows) or insignificant, and so on.

Graphical symbols have rich set of attributes. Activity, for example, in addition to
traditional attributes (name, textual description, performer...) has also domain-
specific attributes (regulations defining it, document templates involved, customer
services fulfilled...) and modeling process attributes (acceptance status, error flags,
version...).

A model in ProMod is a set of diagrams representing business processes (Figure 1).
There are three types of diagrams (all behavioral according to UML taxonomy):

1. Business process diagrams are used to describe business processes for employees
of the organization. They are simple and easy to read.

2. Information system diagrams are also used for process modeling, but are intended
to describe the process in a way, suitable for development of information systems.
They contain all necessary details, but tend to be complicated. For further
differentiation between these two types of diagrams see Chapter 2.6.

3. Customer service diagrams provide description of the business processes from the

viewpoint of services provided to the customers — see Chapter 2.5.
Besides these diagrams, structured lists are also part of the model, representing:

. Structure of organization,

. Regulations and local instructions defining the business processes,

. Information artifacts — documents and pieces of information,

. Services provided to customers.

These lists are not only convenient way to enter values of attributes — they by
themselves carry essential data, establish connection between various fragments of
model and are used for consistency checking and reporting.

N S R S

in Specific Business Process Modeling in Practice 65

Diagramms

Business
processes

Structured lists

Dwn:_ﬂmamamﬁoﬂ
information systems

@ l | Regulations and instructions |
_ Information artefacts |

Customer _

| Structure of organization 7

Customer services v

services

Fig. 1. Diagrams and structured lists

2.3 Refinement of Business Process Models with Enterprise Information

Information stored in the structured lists is needed not only for modeling of business
processes — in fact it is the basic enterprise information. In most organizations this
information can be found in some information systems, but unfortunately these
systems have not been built with business process modeling in mind — they perform
other functions. Traditional modeling tools often are incapable to connect to these
data bases and obtain the data. Models, therefore, remain isolated from the real world,
and if, for example, enterprise information is changed, it is easy to forget to change
the models accordingly.

In domain-specific modeling tools it is natural to provide means for data exchange
with enterprise information systems. ProMod provides these means, giving so the
following advantages:

— Enterprise information can easier be maintained in information systems specially
designed for it — there the information is connected to another data, quality can be
checked and responsibility for maintenance can be assigned.

— Information is not duplicated, if modelling tools take it from information systems.

— Business models are closely connected to real life of the organization, and the risk
for them to become outdated and inadequate is smaller.

— If needed, it is possible to integrate business process models into information
systems, to show step-by-step progress of the instance of business process.

— It is possible to analyze business processes in context of enterprise data, showing,
for example, which other regulations and which steps of business processes will be
affected, if some part of regulation is changed (that, by the way, is especially
important in SSIA, because of frequent and voluntary changes in regulations).

In addition it is possible to interconnect different diagrams and graphical symbols
and to make new types of diagrams according the domain-specific logic. Customer
service diagrams, for example, consists of action symbols, defined in other diagrams,
and joined together, because they are needed for particular customer service (as
mentioned in Chapter 2.2, customer services are part of enterprise data).

TR R =

66 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

2.4 Domain-specific Consistency Rules for Business Processes

Important aspect of modeling is consistency of created models. According to the

scope consistency can be:

1. In the level of element, for example, whether all mandatory attributes have been
entered.

2. In the level of diagram, for example, whether diagram begins with an event.

3. In the level of model, for example, whether all referenced sub-processes are
defined somewhere.

Above mentioned are universal consistency rules, but in ProMod, rules, reflecting
specificity of SSIA are more essential. As the main goal of business processes is to
process customer documents, it must be checked, whether all documents, provided by
customer, are used in some step. It must be checked, whether set of documents from
event starting the business process match to set of documents used in decomposition
of its first step. It must be checked, whether all steps in all business processes are
needed for some customer services, and so on.

As enterprise data is linked to the model, it is possible to check, whether performer
of the step still exists in SSIA, whether customer service is still provided, whether
organizational structure of SSIA have not been changed, whether regulations,
defining business process, have not been expired... As the possibilities of domain-
specific consistency checking seem to be unlimited, ProMod provides means for
easily adding new rules.

In ProMod consistency checking is not performed during creation or modification
of the diagrams — consistency check is a separate action, and inconsistent models can
be stored in the system and kept for a while. This approach gives some benefits:

1. It is possible to start modeling from rough sketches made by insurance
professionals of SSIA, work with them and in the end turn them into consistent
models.

2. This approach is more comfortable for non-IT professionals, because they tend to
concentrate on the main ideas and think, that consistency details are boring.

2.5 Business Processes and Customer Services: Two Views on the Same Model

At the very first steps of the business process modeling in organization like SSIA,
when trying to identify and name business processes, there are two essentially
different options. First, we can look at the organization from management’s
perspective and classify processes according to the way they are performed. Second,
we can take perspective of customers and classify processes according to services or
products they are producing (value added).

Management’s perspective seems more natural, and has been chosen in SSIA (also
risk of “silo thinking” is present — see [16]). We believe that it will be the case in most
government institutions. If one reads statutes of SSIA, the first higher level business
processes are obviously the functions mentioned there: grant social insurance
services, provide consultations, register socially insured persons, etc. (see ProMod
business process diagram in Fig. 2.a). Customer’s perspective would lead to business
processes related to the customer services: grant retirement pension (including

Domain Specific Business Process Modeling in Practice 67

consultations, registration and everything else), grant disability pension or grant
childbirth benefit.

If, following the management’s perspective, we perform top-down decomposition
of high-level abstract business processes; we see that many steps are independent of
the customer services they provide. For example, steps “Receive documents”,
“Register documents” and “Send resolution” (Fig. 2.b) are almost the same whether
request for retirement pension or disability pension is being processed. Differences in
processing various customer services show up only in some steps (Fig. 2.c) and
mostly in deeper level of decomposition.

Calculate length J Receive
of service documents
T Receive [
Srant socia &
insurance Eocmpnt Retiremant Register
services /_\ pension No| documents
Register Yes
Register Sl Check Calculate length
insured ,_\ retirement age of service
ENpPETsSons . | Check
entitlement Disability
Provide
consultations Send
: Egitian Check health .
m . Send resolution
certificate
A4
! b. Refinement of ; d. Customer service
a. Business e c. Refinement of ;
,Grant social insurance X " diagramm ,Grant
processes ,Check entitlement’

services” retirement pension”

Fig. 2. Business processes and customer services

Essential drawback in taking management’s perspective is that in the resulting
models customer services are not clearly represented — they are “dissolved” in
detailed lover-level diagrams. Customer, for example, is always interested in one
service at a time and business process diagrams are not helpful to him.

To resolve this contradiction between management’s and customer’s perspectives,
in ProMod we have introduced special type of diagrams, called Customer Service
Diagrams. The Customer Service Diagram is made for every service provided, and
contains all steps from various business process diagrams, needed to provide that
service (Fig. 2.d). This is a distilled value chain for one particular customer service.
These diagrams do not contain any new information they are just a different views to
business process diagrams, and in our editor they are made semi-automatically.
Customer Service Diagrams bear some resemblance to use-cases and communication
diagrams in UML.

68 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

2.6 Modeling for Humans and Modeling for Information Systems

The MDA approach encourages automatic translation of business process models into
implementation artifacts (representation of the business process as a database objects
or executable code). In the situation when both restructuring of the business
operations and development of an information system are the goals of the business
process modeling, it is tempting to assume, that the same set models can be used for
both purposes. This point seems even stronger, because the same modeling language
can be used to pursuit both goals. However models, that can be easily read by
employees, lack accuracy and detail needed for development of information systems,
but models, suitable for development of information systems, are much too detailed
and boring, to be read by employees. The difference is not only in the degree of
elaboration: style, graphic representation, cultural biases and even human ambitions
must be taken into account.

We faced all these challenges in SSIA, where business divisions were responsible
for business processes, but development of information systems were split into
separate department and partially outsourced. For this reason there are two visually
different diagram types in ProMod: one intended for employees, and other — for
development of information systems (Fig. 3).

BPP1-1.1.1 BPP1-1.12 BPP1-1.13) § BPP1-1.2) |
Sanem un vizuali Registré ienakosos Péarbauda . Registré datus '
— " —8 [1
parbauda visus > dokumentus tiestbas uz ! sociali apdro ‘B
iesniegtos dokumentus (lietvediba) pakalpojumu + personas konta ;

Informacijas
pieprasijums

2 181-1.3.3.4.3
Registré informéaciajs
pieprasijumu

¥ d
N 1S1-1.3.343 <N&> “.— 181-1.3.34.3

Vai var sniegt konsultaciju Parsuta pieprasijumu
nodalas istvaros citai nodalai

lenédkosie
dokumenti

B} 15113343
Identificé klientu un
nosaka tiesibas

Klientu DB

Fig. 3. Diagrams for employees and for development of information system (real-life example)

Diagrams for employees have limited set of graphical symbols; they are intended
to specify sequence of steps, rather than detailed logic; and, in order not to disturb
employees of business divisions, they look much like previously used IDEF(
specifications. Level of detail is acceptable, if knowledgeable insurance professionals
have no difficulties to follow the business process, using them.

m.mm: Specific Business Process Modeling in Practice 69

Diagrams for development of information systems have richer set of graphical
symbols. Level of detail is higher — professional information system designers must
have no difficulties to design information system using these diagrams.

Both types of diagrams are elaborated by top-down decomposition, and higher
level information system diagrams in most cases are subordinated to the lower-level
business diagrams.

3 Transformation-Driven Architecture and Tool Building
Platform GrTP

We have used a metamodel-based Graphical Tool-building Platform GrTP [9] to
implement a number of domain specific languages [10]. The recent version of GrTP is
based on principles of the Transformation-Driven Architecture (TDA [7]). In this
Section, the key principles of the TDA and GrTP as well as their applications in DSL
implementation are discussed.

3.1 Transformation-Driven Architecture

The Transformation-Driven Architecture is a metamodel-based approach for system
(in particular, tool) building, where the system metamodel consists of one or more
interface metamodels served by the corresponding engines (called, the interface
engines). There is also the Core Metamodel (fixed) with the corresponding Head
Engine. Model transformations are used for linking instances of the mentioned
metamodels (see Fig. 4).

Graph Diagram VIVl

A
I _mav:_u_um_‘w:_ﬁ L__a._.uv:_.:
= 1

Dialog MM

Graph Diagram
Engine

Dialog
Engine

Head ransformations

Engine

-
Repository

N

Fig. 4. Transformation-driven architecture framework filled with some interfaces

Each engine may generate events, and the corresponding transformation, being
able to handle this event, is executed. Before calling the transformation, the engine in
which the event occurs creates an instance of the corresponding “Event” subclass. The
properties (attributes and links) of this instance may be considered as arguments for
the transformation. While events are used to call transformations from engines,
commands are used for the opposite direction - to call engines from transformations.

70 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

When there is a need to call an engine, the transformation creates a command and
asks the Head engine to execute this command. The head engine determines which of
the engines must be called and passes the control to it. Each command is an instance
of some “Command” subclass.

3.2 TDA-based Tool Building Platform GrTP

Using TDA approach, we have developed a concrete tool building platform called the
GrTP by taking the TDA framework and filling it with several interfaces. Besides the
core interface, two basic interfaces have been developed and plugged into the
platform in the case of GrTP:

— The graph diagram interface is perhaps the main interface from the end user’s point
of view. It allows user to view models visually in a form of graph diagrams. The
graph diagram engine [7] embodies advanced graph drawing and layouting
algorithms ([17]) as well as effective internal diagram representation structures
allowing one to handle the visualization tasks efficiently even for large diagrams.

— The property dialog interface allows user to communicate with the repository using
visual dialog windows.

The final step is to develop a concrete tool within the GrTP. This is being done by
providing model transformations responding to user-created events. In order to reduce
the work of writing transformations needed for some concrete tool, we introduce a
tool definition metamodel (TDMM) with a corresponding extension mechanism. We
use a universal transformation to interpret the TDMM and its extension thus obtaining
concrete tools working in such an interpreting mode.

3.3 Tool Definition Metamodel

First of all, let us explain the way of coding models in domain specific languages. The
main idea is depicted in Fig. 5. The containment hierarchy Tool -
GraphDiagramType — ElementType — CompartmentType (via base link) forms the
backbone of TDMM. Every tool can serve several graph diagram types. Every graph
diagram type contains several element types (instances of ElementType), each of them
being either a box type (e.g., an Action in the activity diagram), or line type (e.g., a
Flow). Every element type has an ordered collection of CompartmentType instances
attached via its base link. These instances form the list of types of compartments of
the diagram elements of this type. At runtime, each visual element (diagrams, nodes,
edges, compartments) is attached to exactly one type instance.

1 | GraphDiagramType . | GraphDiagramStye

0.1 name:Siring layoutiviode:integer

il e

refinementType
i ElementStyie

Element 0.1 . lineColorinteger
¥ N T
i ElementType 5 i

EdgeStyle i
startShape: Integer i
middleShape: Integer ||
endShape: Integer
lineType: Integer

thickness: Integer

width: Integer
| | height Integer
| | bkgColor: Integer

i

fontSize: Integer
fontColor: Integer

Fig. 5. The way of coding models

The extension mechanism is a set of precisely defined extension points through
which one can specify transformations to be called in various cases. One example of a
possible extension could be an “elementCreated”’(attribute of ElementType)
extension providing the transformation to be called when some new element has been
created in a graph diagram. Tools are being represented by instances of the TDMM by
interpreting them at runtime. .

Therefore, to build a concrete tool actually means to generate an appropriate
instance of the TDMM and to write model transformations for extension points. In
such a way, the standard part of any tool is included in the tool definition metamodel
meaning that no transformation needs to be written for that part.

4 Some Applications of Domain-specific models

Business process modeling is not an end in itself — models are built to make high-
quality and convenient information systems. Sensitivity of social security and
frequent changes in regulations (see Chapter 2.1) require high reliability, flexibility
and maintainability of software. Traditional method of software developments have
been used for years and have not yielded desired results. Using specifications in
natural language, it was impossible to achieve needed accuracy and unambiguity. We
have proposed modeling with domain-specific graphical language ProMod as a
solution. Applications of the modeling that are the most urgent in SSIA are described
below.

Availability of models to the wide spectrum of users. Concise description of
business processes in graphical diagrams can be used as instructions for employees
providing customer services and as information for clients, showing what will be done
in SSIA, in order to serve their requests. The best way to spread the models is to make
them available on the internet.

ProMod can export diagrams, corresponding information from structured lists and
descriptive documents to Web pages. Thought not every diagram is suitable for every

12 J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs

reader, and models with varying level of details and models from different
perspectives must be built — for example in-depth description for employees of SSIA
and simplified version for customers.

Job descriptions for SSIS employees. Job responsibilities for many SSIA
employees in fact are defined by activities in the business process models — in
ProMod Customer Service Diagrams are especially designed to show this. Business
process diagrams must be used in Job descriptions to make them more concise and
casy to read compared to textual instructions. We have conducted survey, which
shows ([6]), that 90% of employees in government institutions prefer graphical
descriptions to textual. We believe that job descriptions for most of the SSIA
employees will be covered by Customer Service Diagrams.

Software requirement specifications. Contradiction between inaccurate and
changeable requirement specifications, defined in natural language, and need for
high-quality information systems is well-known and has already been discussed in
this paper. We believe that domain specific business modeling (especially, using
ProMod Information System Diagrams) will largely improve situation in SSIA.

Conversion from models to applications. We believe that approach: “Less
technical programming, more concise specifications”, and development of
information systems without technical programming can become possible in the
nearest future. Modeling is the first and mandatory stage in this process. In order to
use information from business models in applications (no matter, whether they are
generated from models or coded manually), it is necessary to transfer this information
automatically or manually from repository of the modeling tool into application
database. Manual transferring involves re-entering information about objects and their
connections, and linking this information to the application data. This is a monotone
and quite error-prone job. Transferring information with automated tools would be
more efficient. This kind of transformation can be implemented with minor resources,
if the modeling tool provides application programming interface to access its
repository. So application can work according to models created in graphical
language, but its quality (usability, reliability, security, performance etc.) remains
independent of capacity of some hypothetic generator to generate a high-quality
applications.

This approach has been tested in a number of medium-size projects [6], where
information systems are less complex than in SSIA. In SSIA this is a next step to be
taken. This approach has proved noticeable viability, and attitude of users towards the
graphical models as requirement specifications and as core of user guides was
surprisingly positive. Users considered graphical diagrams as highly comprehensible
and soon gave up reading thick and boring manuals. Admittedly this approach asks
for further development, but we see this as a realistic way to develop user-friendly,
flexible and reliable information systems.

5 Conclusions

The following conclusions can be made from our experience with creating domain
specific language ProMod and with business process modeling in SSIA:

Domain Specific Business Process Modeling in Practice 73

— Business process modeling with domain-specific language is preferable, compared
to modelling with general-purpose language.

~ Domain specific models have wide application: they can be used as core of job
descriptions and requirement specification, as source of information for automatic
generation of applications.

— With tool building platform GrTP domain-specific languages and supporting tools:
graphical editor, consistency checker and model-to-application information transfer
utility, can be created in short time and with modest resources.

— Move to model-driven architecture profoundly changes information system
development technology. If an information system has been developed with
traditional methods, serious modifications and enormous resources can be needed.
Practical experience in business processes modelling in large and complex

government institution SSIA, confirms feasibility and advantages of model-driven

development of information systems.

Acknowledgments. This research is partly supported by European Social Fund.

References

1. UML, http://www.uml.org.

2. BPMN, http://www.bpmn.org.

3. MDA Guide Version 1.0.1. OMG, http://www.omg.org/docs/omg/03-06-01 .pdf.

4. Oracle Designer, rBu“\\ééé.oSo_m.ooE\Snrso_omv\\?oacoa\aommmsolaoo:BwEmmoPEB_

5. Flore, F.: MDA: The Proof is in Automating Transformations Between Models. Optimall
White Paper. Eﬁ“\\ééé.mﬂo.c?\.mm\ZoEman\Eam\BoawEw:mon:mao:m.@%o

6. Cerina-Bérzipa, J., Bitevskis, J., Karmnitis, G.: Information systems development based on
visual Domain Specific Language BiLingva. In: 4th IFIP TC2 Central and East European
Conference on Software Engineering Techniques (CEE-SET 2009), Krakow, Poland (2009)

7. Barzdins, J., Cerans, K., Kozlovics, S., Rencis, E., Zarins, A.: A Graph Diagram Engine for
the Transformation-Driven Architecture. In: Proceedings of the IUI'09 Workshop on Model
Driven Development of Advanced User Interfaces, pp. 29-32, Sanibel Island, USA (2009)

8. Lankhorst, M., et al.: Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer (2009)

9. Barzdins, J., Zarins, A., Cerans, K., Grasmanis, M., Kalnins, A., Rencis, E., Lace, L.,
Liepins, R., Sprogis, A., Zarins, A.: Domain Specific languages for Business Process
Managment: a Case Study. In: Proceedings of DSM’09 Workshop of OOPSLA 2009,
Orlando, USA (2009)

10. Barzdins, J., Kozlovics, S., Rencis, E.: The Transformation- Driven Architecture. In:
Proceedings of DSM’08 Workshop of OOPSLA 2008, pp. 60—63, Nashville, USA (2008)
11. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice Hall (2004)

12. Weiklens, T.: Systems Engineering with SysML. Morgan-Kaufman OMG Press (2007)

13. White, S.A., Miers, D., Fischer, L.: BPMN Modeling and Reference Guide. Future
Strategies Inc. (2008)

14. Lan Cao, Balasubramaniam Ramesh, Matti Rossi: Are Domain-Specific Models Easier to
Maintain Than UML Models? In: IEEE Software, vol. 26, no. 4, pp. 19--21 (2009)

I5. ICAM Architecture Part II - Volume IV - Function Modeling Manual (IDEF0).
http://handle.dtic.mil/100.2/ADB0624

i e e - T - -

J. Biceyskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis and S. Nesterovs gs of the Ninth International Baltic Conference — Baltic DB&IS 2010

16. Harmon, P.: Business Process Change. Morgan Kaufimann Publishers (2007)

17. Freivalds, K., Kikusts, P.: Optimum Layout Adjustment Supporting Ordering Constraints in
Graph-Like Diagram Drawing. In: Proceedings of The Latvian Academy of Sciences,
Section B, vol. 55, No. 1, pp. 43-51, Riga (2001)

he design of electronic service process using YAWL

Peteris Stipravietis, Maris Ziema

Riga Technical University, Faculty of Computer Science and Information Technology,
Institute of Computer Control, Automation and Computer Engineering
Meza 1/3, 3rd floor. LV-1048, Riga, Latvia

{Peteris.Stipravietis, Maris.Ziema}Qzzdats.lv

Abstract. The article discusses the solution of common business process
design-time problems using YAWL. The approach proposed by the authors is
~ based on the creation of business process in the YAWL environment in order to
~ simulate the process model which could resolve some of the design-time
- problems as well as provide hints to correct initial process. The article describes
 technique to acquire the primitive description of process from the YAWL
~ workflow. The primitive description is represented as oriented graph and is
- used fo transform the YAWL workflow to another hierarchic language. To

create process description in BPEL, pattern recognition algorithm is used on the
- process primitive description. The resulting BPEL process is then evaluated,
- comparing it with initial YAWL workflow and trying to execute it, involving
the programmer to fix something as little as possible.

Keywords: YAWL, BPEL, simulation, transformation.

1 Introduction

a

ices are common in information society nowadays, and even though they tend
0 become more and more accessible and varied, the problems that occur during the
gn phase of the service remain the same. These problems include, for example,
ons on how to facilitate the creation of business process to the user with no
ecific programming skills, how to define the process in a way that creates the
cess description abstract but accurate enough at the same time, how to check the
ted model — to determine the weaknesses, perform the measurements based
uning, and others. The solutions of these problems rely heavily on the choice of the
v age used to describe the process.

~ Existing business process modeling languages can be divided in two groups. The
languages of the first group are favored by the academic community, but rarely used
Wﬂw&_-&m solutions. These languages are based on Petri nets, process algebra; they
‘have formal semantics, which allow the validation of the models described by these
languages. The languages of the second group are used in real-life projects much
~more than in academic researches. BPEL, BPMN are among these languages. These,
s0 called business languages, often lack proper semantics, which could lead to debate
on how to interpret the business models described by these languages. The availability
of different implementations of these languages from different vendors does not

76 P Stipravietis and M. Ziema

facilitate the situation either, yet they are used much more, compared to seldom used
models described by academic languages. If a situation arises when business process
model described by business language needs to be validated using Petri nets, one must
either abandon the validation or transform the process model to another model,
described in academic language, for example YAWL. The authors propose reverse
approach — first, a process is created using academic language. The design problems
of the process model can then be solved by mathematical means. Second, the verified
and updated model is transformed to model described in business language. The
advantages of the approach described follows:

e Ifamodel is created using academic language, it is more readable and
maintainable than the model, which is a transformation result itself. It is also
easier to perform analysis of untransformed model, because the
transformation could lose some design information.

e Model, transformed to business language, is already validated and ready to
be executed. Of course, the model must be double-checked to make sure if it
needs any corrections. The alternatives of the execution environment for the
model are much more than the environments for academic languages; in
addition to that, they have superior technical support.

The purpose of this article is to examine the aforementioned approach — can it be
used during the design of simple e-service business project, check if it helps to resolve
most common design-time problems; view the transformation from academic
language YAWL to business language BPEL — these languages are chosen to
implement the proposed approach.

2 The languages

YAWL stands for ‘Yet Another Workflow Language’ — the language to describe
workflows. It supports non-trivial data transformations and integration of web
services. YAWL is based on extended workflow nets (EWF) [1]. YAWL could be
defined as Petri net, enhanced with possibility to define multiple instances,
synchronizations, OR splits and joins as well as cancellation regions. The workflow
definition in YAWL in hierarchically structured set of EWF nets, forming a tree.
Every net consists of activities and conditions — the places and transitions of the net.
Activities can be atomic or composite. In fact, every composite activity is a net itself,
Every net has an input and output condition [2]. YAWL has a graphic environment in
which the workflows are created and execution environment to load and run validated
definitions of workflows into. YAWL-based solutions are also used in business
environment, for example, YAWLA4Film is a YAWL extension used in Australian
Film Television and Radio School (AFTRS) [3], but extension YAWL4Health is used
in Academic Medical Centre (AMC) in Netherlands [4]. YAWL is chosen as the
academic language of the approach because of the following reasons:
e YAWL is based on EWF, the workflows described in YAWL can be
transformed to colored Petri nets to perform simulations and formal semantic
validation;

The design of electronic service process using YAWL 77

e YAWL is designed to support all the workflow patterns [5].

BPEL stands for ‘Business Process Execution Language’. Processes described with
BPEL uses web services to exchange information with other processes or systems.
BPEL is based on XML, it has not standardized graphical notation. BPEL is chosen as
the business language of the approach because of the following reasons:

o BPEL is an industry standard,

e There are many popular environments available, in which to design and run
BPEL processes — Microsoft BizTalk, Oracle BPEL Process Manager and
IBM WebSphere among the others.

3 The simulation

The analysis of the created business process is very important part of the design —
one needs to find bottlenecks, when instance of the process or its part could use up all
available resources, thus forcing other instances to wait for these resources; identify
dead ends, which could lead to infinite loops and never ending process instances; find
deadlocks, when process querying for the same resources effectively block each
other; define fault handling and cancellation activities, which cancel all the work done
by previous activities; identify reusable structures, for example, audit log activities.

Such challenges usually are overcome with the simulation. Let us inspect a certain
simulation approach and see if it helps with the problems, mentioned before. The
authors of the publication [6] propose simulation which uses process design data,
historical data about executed process instances from audit logs and state data of the
running process instances from the execution environment. Data from all three
sources are combined to create simulation model — design data are used to define the
structure of the simulation model, historical data define simulation parameters, state
data are used to initialize the simulation model.

Altering the simulation model allows to simulate different situations, for example,
to omit certain activities or divert the process flow to other execution channels.
Taking into account the state data of running process instances, it is possible to render
the state of the system in near future and use the information to make decisions
regarding the underlying business process.

The simulation of the workflow is carried out using process data mining
framework ProM [7]. To create simulation model, following steps are performed:

e Workflow design and audit log data are imported from execution
environment;

e According to imported data a new YAWL workflow model is created and
state date are added,;

e The new model is converted to Petri net;

e Resulting Petri net is exported to simulation execution environment CPN
Tools [8] as a colored Petri net.

78 P, Stipravietis and M. Ziema

A simple business process which provides credit card application is used as an
example (Fig. 1). This process is used as an example in many solutions, related to
YAWL.

ID: CreditAppProcess2.0, Net D. Creditap

%Y.ﬂ'O

el notify c13 /

blv., acceptance \E

9 start complete
r o o1d approval

180\
c§ perform <6 /
checks for

approval ¢q2

&, large amount credit card
receive el check for cd check _ou:/AQ m U / ._._uro
licati amount . decision VD
e7 perform c8 el notify

checks for wo_enzoz
stall amount

Fig. 1. YAWL workflow example [6].

Experimenting with the proposed simulation and analyzing the results, the authors
of this paper conclude that this technique could be used to solve some of the
designing problems mentioned before. The technique discussed differs from others
(known to authors) with its degree of realism — many other methods assume that
available resources are 100% dedicated to the instance being simulated and do not
take into account real resource usage by other instances or processes; yet this method
creates artificial delays based on historical data from audit logs. Such approach allows
finding bottlenecks in the process model. The identification of dead ends is simple
enough too — one has to execute the simulation using each member of the
initialization parameters set and disabling delays. However, the deadlock
identification is not possible, because this simulation approach does not allow
multiple parallel process instances within one scope. Furthermore, the approach does
not provide the cancellation simulation; hence the YAWL fault handler testing is not
possible. The reason of this lack of functionality is the absence of cancellation region
concept in Petri nets. Similarly, Petri nets does not support OR splits and joins (multi-
choice workflow pattern, M out of N), therefore the simulation of these constructs is
not possible. Such pattern is not supported by BPEL either.

4 The transformation

When the process model has been simulated and updated accordingly, it is ready to be
transformed to BPEL process. Proposed transformation at first creates primitive
process structure and then creates BPEL process, using pattern recognition. Similar
task - the pattern recognition and transformation to BPEL - is discussed in [9] and is
based on the transformation of BPMN process to Petri net and subsequent
transformation of the net to BPEL process. The approach proposed by authors of this
paper uses language independent primitive structure - the notation of the process flow
as a directed graph preserving the semantics of the process. The algorithms described
in [9] allows to transform non-well-formed BPMN processes, using the event-action
mechanism of BPEL, producing usable, albeit rather unreadable BPEL. The authors
of this paper tend to transform the non-well-formed primitive structure to well-

The design of electronic service process using YAWL 79

formed one (i.e. using algorithms discussed in [10]), because it would allow to
transform the process to any structured language, not just BPEL.

4.1 Transition from YAWL workflow to primitive structure

To facilitate the transition from YAWL workflow to BPEL process, the bipartite
graph describing the workflow is simplified, resulting in primitive process structure —
oriented graph with vertices of one kind. The primitive structure is created by
removing the vertices standing for YAWL net places. The condition attached to the
removed place is attached to new arc between the vertices of primitive structure.
There is one exception, though — the end place also is included in the primitive
structure.
Let us define the YAWL workflow as(P, T, W), where:

P — finite set of places un T — finite set of transitions, PNT = @; but W <
(P X T) U (T x P) is set of arcs between places and transitions in such a way that no
transition is connected with another transition and no place is connected with another
place. P, C P is a subset of P and denotes end places of the workflow: W N (P, x
T) = @. The example of simple workflow is shown in Fig. 2.

>)
@lv P1 T1 P2
PO TO o, T3 PS

P3 T2 P4

Fig. 2. Simple YAWL workflow

Let us define primitive structure(4, W), where:
A — finite set of activities, containing all elements from the workflow transition set
T and all elements from the end places set P,: A = (T U P,).

cond .
If Ty = P, = Ty denotes a process flow from transition Ty to transition T; through

place B, when condition cond allows it, then corresponding transition from A4, to A,
cond
is defined in primitive structure — Ay = A4,.
cond .
If T,,, = P, denotes a process flow from transition T,, to place P,, when condition

cond allows it and B, € Py, then corresponding transition from A,, to A4, is defined in
cond i . .
primitive structure — A,, = A,. The example of primitive structure is shown in Fig.

3.

Fig. 3. Primitive structure corresponding to sample YAWL workflow

The transition from YAWL workflow to primitive structure is accomplished by
analyzing the YAWL workflow description in XML. Fig. 4 shows the class diagram
of primitive structure. Tables 1 and 2 describes the attributes and operations of the
Process and Activity classes respectively.

Activity Process

+Name : string
+StartActivity : Activity

+Condition : string
+IncomingType : string
+Index : int

+LowLink : int

+Name : string
+OutgoingType : string
+AddToNextTasks()
+ClearNextTasks()
+GetNextTasks() : object
+NextTaskContains() : bool

Fig. 4. Class diagram of primitive structure

Table 1. Attributes and operations of Process class.

Attribute/operation Description
Name The name of the primitive structure
StartActivity The starting vertex of primitive structure

Table 2. Attributes and operations of Activity class.

Attribute/operation
Condition

Description
The condition which allows the process flow through
this activity

wmm_ of electronic service process using YAWL 81

Attribute/operation Description
IncomingType Type of incoming arcs:
e None — no incoming arcs (for example, start
activity)
e Single — one incoming arc
e And - many incoming arcs, synchronizing
parallel flow
e Xor— many incoming arcs, synchronizing
exclusive flow
Index Index — is used for cycle identification with Tarjan SCC
algorithm.
LowLink Link — is used for cycle identification with Tarjan SCC
4 algorithm
Name The name of activity
OutgoingType Type of outgoing arcs:

e None —no outgoing arcs (for example,
1 process end)
e Single — one outgoing arc
e And — many outgoing arcs, starting parallel

flow
_ e Xor—many outgoing arcs, starting exclusive
flow
, AddToNextTasks() Operation adds new neighbor to the neighbor set
ClearNextTasks() Operation clears neighbor set and deletes all outgoing
arcs
GetNextTasks() Operation returns neighbor set

X NextTasksContains() ~ Operation checks if neighbor set contains given
neighbor

4.2 Transition from primitive structure to BPEL process

A BPEL process is hierarchically structured activity set of sequential execution. It
does not allow arbitrary cycles or goto-like constructions — the process constructions
are either sequential or inclusive. It means that situation when a construction A, let us
say, ‘while’, opens and then construction B (‘flow’) opens, but then A is closed and B
remains open, is not valid. The opening and closing of construction blocks should
follow the LIFO principle.

There are cases when vertices of primitive structure do not follow that principle —
that happens when both incoming and outgoing arc count is greater than 1, i.e., the
vertex both synchronizes and splits the process flow. To avoid such problems
corresponding vertex is divided in two vertices — the first for synchronizing the flow
but the second for splitting it. The division of vertices helps to identify patterns
correctly. It also facilitates the finding of the starting and ending activities of each
pattern. Fig. 5 shows a fragment of workflow where a transition synchronizes the flow
and immediately splits it.

82 P, Stipravietis and M. Ziema

O

Fig. 5. The synchronization and splitting of the process flow in YAWL

N v @
Fig. 7. Divided vertex to avoid overlapping

4

)J
4 N After the primitive structure has been updated, pattern identification in it can be
. ted. Most common patterns are shown in Table 3.
/xf
. Table 3. Most common patterns
\\\) BPEL element Description
= Sequence Allows defining a set of activities that will be
: C L invoked in an ordered sequence
- While, Repeat/Until ~ Repeating activities

p

Flow Allows defining a set of activities that will be
invoked in parallel. The Flow is considered
finished when all parallel flows within are
finished.

Exclusive choice If Case construct for branching the flow.

Fig. 6. Pattern overlapping in primitive structure

Fig. 6 shows overlapping of the patterns in primitive structure. The division is
carried out by traversing all the vertices of primitive structure and dividing whose

- The primitive structure is processed beginning with its starting activity. This

activity is transformed to BPEL Receive activity, immediately followed by Reply
activity. If the count of outgoing arcs of starting activity is equal to 1, the Receive-
Reply pair is enclosed by Sequence Activity. If there is more than one outgoing arc,
 the pair is put within Pick activity. After the starting activity algorithm recursively
- processes its neighbors — firstly it traverses the primitive structure using depth-first
- search until the end activity of initially identified pattern is found, then traverses the
___ next neighbor of initial activity using breadth-first search. When all neighbors and the
- activity block have been traversed and mapped onto BPEL process, algorithm
continues with next block. To find the end activity of a pattern following algorithm is
used — iterate through first neighbor of each activity in loop and check if its incoming
arc type is equal to outgoing arc type of initial activity. To avoid mistakes when there
is, for example, another If construction within initial If construction, counter is
introduced — it increases with each nested construction and decreases when nested
construction is closed. The end activity of the block is found when counter becomes
equal to 0.

both incoming and outgoing arc count is greater than 1. The original vertex preserves
its incoming (synchronizing) arcs, while the outgoing (splitting) arcs are added to new
vertex. Both vertices are connected with new arc.
If I(A) - set of incoming arcs of vertex A, 0(A4) — set of outgoing arcs of vertex A,
but [I[(A)| > 1 A [0(4)| > 1, then define vertex A :
e 04)=0@4) - copy the outgoing arcs of ‘old’ vertex to ‘new’ vertex:

e 0A)=IU)={A> A'} —replace the outgoing arcs of ‘old’ vertex
with a single arc to ‘new’ vertex, which also forms the set of incoming
arcs for ‘new’ vertex.

The primitive structure with divided vertices and clearly separated patterns is
shown in Fig. 7.

Method to find the ending activity of the block

Bne ¢ = 1;
Activity st = BLOCK START TASK;
Activity tmp = BLOCK START TASK;

84 P. Stipravietis and M. Ziema

while (c != 0)
{
tmp = tmp.GetNextTasks () [0];//First neighbor
if (tmp == st) //First neighbor == start task => LOOP
return tmp;
if (tmp.OutgoingType == st.OutgoingType) //Similar
nested block
Gk
if (tmp.IncomingType == st.OutgoingType) //End of
block (nested/orig)
e
}
return tmp; //Block ending activity

Loops within the primitive structure are identified using Tarjan SCC algorithm
[11]. The result is a list of cycles, where cycles are implemented as a list of activities,
Looping activities are processed like other activities — every neighbor of starting
activity by depth-first search until the block end activity, then breadth-first remaining
neighbors.

4.3 Requirements to the YAWL workflow

To be able to transform the YAWL workflow successfully, the workflow must
conform to some requirements. Firstly, it should not contain patterns, which have no
analog constructions in BPEL, for example, the passing of process control to an
activity residing outside the synchronized block, i.e. — goto-like construction. BPEL
directly supports 13 patterns out of 20, discussed in [12]. Table 4 lists unsupported
patterns and possible workarounds.

Table 4. Problematic patterns

Pattern Possible workaround

Multi-merge BPEL offers no support for Multi-merge pattern, as it does not
allow for two active threads following the same path without
creating new instances of another process

Discriminator BPEL offers no direct support for Discriminator pattern; there
are no structured activities which can be used for implementing
it

Arbitrary cycles Only structured loops like while and repeat-until are allowed.

There are no goto-like constructs in BPEL.

A pick activity within a while loop is used, enabling repetitive
processing, triggered by three different messages: one
indicating that a new instance is required, one indicating the
completion of a previously initiated instance, and one
indicating that no more instances need to be created [12].

Multiple instances
with runtime
knowledge
Multiple instances
without runtime
knowledge
Interleaved parallel Multiple scopes within a flow construct that complete for a
routing single shared variable whose access is serialized. The order of
the scopes is arbitrary but serial [13]. This solution is not

The design of electronic service process using YAWL 85

Pattern Possible workaround

applicable if one occurrence of the interleaved parallel routing
pattern is embedded within another occurrence, because BPEL
serializable scopes are not allowed to be nested.

Poll within a while/repeat-until loop.

Milestone

Secondly, the incoming and outgoing messages are associated with specific
process instance using correlation sets. YAWL lacks concept of correlation sets,
because each workflow instance (case) is started by its clients (users), thus creating an
instance in execution environment. This environment manages the workflows and
offers to users corresponding options, based on the state of instance and its
specification [14]. The variable which could be used as an correlation set variable
must be created in the workflow or during the transformation and finally added to
each defined data type used in BPEL messages.

Thirdly, support of human tasks — all BPEL activities related to exchange of
information with process partners are perceived as web service operations, i.e., BPEL
has no concept of “Human interaction”. To fill this gap several BPEL extensions are
proposed, for example, BPEL4People [15] — OASIS is working on standardizing this
extension, while IBM offers implementation in its WebSphere environment [16].

Last but not least, workflow definition must correctly define all the branching
conditions, lest transformed BPEL process” While, Repeat/Until and If blocks contain
incorrect values.

4.4 Example

For an example authors use the same business process which provides credit card
application and was used as a simulation model (Fig. 1). The process consists of four
blocks — receive application, check data completeness and ask for more if necessary,
make decision and inform the client. This example contains all most common patterns
— simple task, parallel flow, loop and exclusive choice. Transforming the workflow to
primitive structure, tasks “Check for completeness” and “Make decision” are divided
to avoid pattern overlapping. Fig. 8 shows the primitive structure of example
workflow with already divided vertices and identified BPEL patterns.

ign of electronic service process using YAWL 87

.

ﬁ“iﬁiﬁ

{

<condition> number (/CreditApp/amount/text()) < 1001</condition>
<sequence>
<invoke name="perform checks_ for small amount_14"
operation="op perform checks_ for small_ amount 14"
partnerLink="pl perform checks_for_ small_amount_14"/>
</sequence>
<elseif>
<condition>number (/CreditApp/amount/text ()) > 1000</condition>
<sequence>
<invoke name="perform checks_for large_amount_ 13"
operation="op perform checks_for_large_amount 13"
wwwnwmHbH:wn:wwllvmHmoHaloﬁmOWMIWOHIHWH@mImEOSSWIHw:\v
</sequence>
</elseif>

it
 <invoke name="make_decision 17 part0Ol"
~ operation="op make decision_17_partOl"
partnerLink="pl make decision_17_part01"/>
<if name="make decision_ 17 part02">
<condition>/CreditApp/isAccepted/text () = 'false'</condition>
<sequence>
<invoke name="notify rejection_20"
operation="op notify rejection_20"
partnerLink="pl notify rejection_20"/>

</sequence>
<elseif>

<condition>/CreditApp/isAccepted/text () = 'true'</condition>
<sequence>

<flow name="start approval 21">
<sequence>
<invoke name="notify acceptance_ 25"
operation="op notify acceptance_25"
partnerLink="pl notify acceptance_ 25"/>

_ '

After the creation of primitive structure BPEL process description is generated and

Fig. 8. The primitive structure of credit application workflow

is shown below.

</sequence>
<sequence>
<invoke name="deliver credit_ card 27"
0y operation="op deliver_ credit_card 27"
partnerLink="pl deliver_ credit_card_27"/>
</sequence>
</flow>

<invoke name="complete approval_ 24"
operation="op complete_approval_24"

partnerLink="pl complete approval_24"/>

<process name="CreditApp" targetNamespace=http://example.com/bpel </sequence>
xmlns=http://docs.oasis-open.org/wsbpel/2.0/process/executable f </elseif>
xmlns:sref="http://docs.oasis-open.org/wsbpel/2.0/serviceref"> ! </if>

<sequence>

<receive name="receive application 3" createInstance="yes"

operation="op receive application 3"
partnerLink="pl receive application 3"/>
<reply name="receive application 3" B
operation="op_ receive application 3"
partnerLink="pl receive application 3"/>
<while DWEmU:osmowlmowloogﬂwmﬁm:mmmlmlmmﬁﬁoH:v
<condition>/CreditApp/isEnoughInfo/text () =

<invoke name="get more_info_8" operation="op__get more_info 8"

partnerLink="pl get more_info_ 8"/>
</while>
<if name="check loan amount 10">

</sequence>
/process>

'false'</condition>

ol receive application 3

-

gl receive_spplication 3 \ ._

| @ check_for_completeness 9_part01 |
=

FrR) |

-1 I
;!

@ check_loan_smount 10 |

E B

Sequence ;\1\ B
T

. ‘ «
_ _ s nio#d-n:nnxﬂoﬁ_uﬁn.-.:o:aﬁww

& perform_checks_for_small -Boniui

s g

SUSREL L REe O Tl

e

& if.nawas.:.e...@u .

e RN

| @ notify_rejection 20 |

,.‘\ & complete_approval 24

¥
Bt seb EEe g N SR

sl e

@ on

Fig. 9. Visualization of BPEL process

Fig. 9 shows generated BPEL process. The process structure is transformed

correctly; however, analyzing the XML version reveals that some important blocks of

process definition are absent:
e partnerLinks, which define the links between process activities and web
service WSDLs;
e variables, which describe the variables and their data types, used in process.
The transformation does not support the creation of this block as well as
partnerLinks yet, although it is possible, because YAWL workflow

definition also contains description of variables, data types and invoked web
service endpoints and operations;

faultHandlers, which describe exception handling and cancellation;
correlationSets, which define correlation sets used in process binding with
messages.

proposed approach of business process modeling, at first creating the model in
>mic language to be able to perform mathematically based analysis; and then
forming it to the process described in business language with wider supported
choice, is quite successful. The main benefit of this approach is creation of
tive structure and traversal and pattern identifying algorithm, which allows the
formation from YAWL workflow to any other hierarchical language, both
emic and business. The traversal and identifying algorithm is applicable to the
cesses defined in other languages, however, these processes must be altered
pondingly to avoid the pattern overlapping problem.

The simulation model has some flaws — simpler design problems, for example,
tleneck and dead end identification can be achieved with this approach; however,
complex problems, such as deadlock identification or the operation of
ancellation region, could not be resolved. To be honest, it has more to do with Petri
, used in the simulation model, because these do not support multiple process
nces or cancellation regions. It is possible that using the simulation model based
n other mathematical framework, these problems could be solved.

e proposed transformation successfully recognized the patterns used in YAWL
flow and rendered the structure of the process; however, it missed some
ortant process description blocks. Some of them could not be created using the
oposed approach, such as faultHandlers, because simulation model used, based on
Petri nets, does not support the simulation of exception handling. Some blocks simply
ere not processed — variables and partnerLinks fall into this category; while some
were not possible to create at all, like correlationSets. The example used did not
contain more complicated patterns, such as Foreach.

Summarizing the results, authors conclude that approach proposed in this article
must be developed further. The main challenges are — the transformation must be able
10 create primitive structure from more complicated workflow, where patterns such as
reach or arbitrary loops are used, at the same time not forgetting about pattern
overlapping problem. Other simulation models must be examined to see if they could
solve the problems proved too hard for model used in this article, but transformation
‘model has to be able to create variable and partnerLinks blocks. Last but not least, the
requirements against the YAWL workflow model must be defined, so it could be
‘possible to automatically create both faultHandlers and correlationSets blocks.

90 P, Stipravietis and M. Ziema

References

1. M. Weske "Business Process Management", Springer 2007, p. 169

2. W. M. P. van der Aalst, A. H. M. ter Hofstede: YAWL: Yet Another Workflow Language.
Inf. Syst., vol. 30(4), pp 245275 (2005)

3. C. Ouyang, A.H.M. ter Hofstede, M. La Rosa, M. Rosemann, K. Shortland and D. Court,
Camera, Set, Action: Automating Film Production via Business Process Management. In
Proceedings of the International Conference “Creating Value: Between Commerce and
Commons”, Brisbane, Australia, 2008

4. YAWL4Health, http://www.yawlfoundation.org/casestudies/health

5. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar: Workflow Control-
Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

6. A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, AHM. ter Hofstede, and C. J. Fidge:
Workflow Simulation for Operational Decision Support Using Design, Historic and State
Information. Proceedings of the 6th International Conference on Business Process
Management (BPM 2008), 2008, Milan, Italy. LNCS, vol. 5240, pp 196 — 211. Springer
(2008).

7. WM.P. van der Aalst, B.F. van Dongen, C.W. Gunther, R.S. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, HM.W. Verbeek, and A.J.M.M. Weijters. ProM
4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn and A. Yakovley,
editors, Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN
2007), LNCS, vol. 4546, pp 484-494. Springer, Berlin (2007)

8. K. Jensen, L.M. Kristensen, and L. Wells: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software Tools
for Technology Transfer, vol. 9(3-4), pp 213-254 (2007)

9. Chun Ouyang , Marlon Dumas , Wil M. P. Van Der Aalst , Arthur H. M. Ter Hofstede , Jan
Mendling, From business process models to process-oriented software systems, ACM
Transactions on Software Engineering and Methodology (TOSEM), v.19 n.l, p.1-37,
August 2009

10. J. Koehler and R. Hauser. Untangling unstructured cyclic flows - A solution based on
continuations. In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bussler, and A. Gal et al,
editors, On the Move to Meaningful Internet Systems 2004: CooplS, DOA, and ODBASE:
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2004, volume
3290 of Lecture Notes in Computer Science, pages 121-138, 2004.

11.Strong Connectivity, http://www.ics.uci.edu/~eppstein/16 1/960220.htmi#sca

12.P. Wohed, W. van der Aalst, M. Dumas, A. H. M. ter Hofstede: Pattern Based Analysis of
BPEL4WS. FIT Technical Report, FIT-TR-2002-04, Queensland University of Technology,
Brisbane, 2002

13.M. Havey: Essential Business Process Modeling. p. 141, O’Reilly (2005)

14W. M. P. van der Aalst, L. Aldred, M. Dumas, T. A. H. M. Hofstede: Design and
Implementation of the YAWL System. Proceedings of the 16th International Conference on
Advanced Information Systems Engineering (CAiSE’04), Riga, Latvia, LNCS vol. 3084, pp
142-159, Springer (2004).

15. Holmes T., Vasko M., Dustdar S.: VieBOP: Extending BPEL Engines with BPEL4People.
16th Euromicro International Conference on Parallel, Distributed and network-based
Processing 2008, 547-555. February 2008.

16.WS-BPEL Extension for People,

EH\\eﬁg.:uE.ooB\QQ\m_oumgozﬁm\éovmﬂioom\:g.mj\\mcaﬁmommon\im-_uco_fumoc_n\

Grammatical Aspects for Language Descriptions

Andrey Breslav*

abreslavegmail . com
ITMO University
St. Petersburg, Russia

Abstract. For the purposes of tool development, computer languages
are usually described using context-free grammars with annotations such
as semantic actions or pretty-printing instructions. These descriptions
are processed by generators which automatically build software, e.g.,
parsers, pretty-printers and editing support.

In many cases the annotations make grammars unreadable, and when
generating code for several tools supporting the same language, one usu-
ally needs to duplicate the grammar in order to provide different anno-
tations for different generators.

We present an approach to describing languages which improves read-
ability of grammars and reduces the duplication. To achieve this we use
Aspect-Oriented Programming principles. This approach has been im-
plemented in an open-source tool named GRAMMATIC. We show how it
can be used to generate pretty-printers and syntax highlighters.

1 Introduction
5

With the growing popularity of Domain-Specific Languages, the following types
- of supporting tools are created more and more frequently:

— Parsers and translators;

— Pretty-printers;

— Integrated Development Environment (IDE) add-ons for syntax highlighting,
code folding and outline views.

Nowadays these types of tools are usually developed with the help of genera-
tors which accept language descriptions in the form of annotated (context-free)
grammars.

For example, tools such as YACC [7] and ANTLR [12] use grammars anno-
tated with embedded semantic actions. As an illustration of this approach first
consider an annotation-free grammar for arithmetic expressions (Listing 1.1). To
generate a translator, one has to annotate the grammar rules with embedded
semantic actions. Listing 1.2 shows the rule expr from Listing 1.1 annotated for
ANTLR v3.

* This work was partly done while the author was a visiting PhD student at University
of Tartu, under a scholarship from European Regional Development Funds through
Archimedes Foundation.

cal Aspects for Language Descriptions 93

expr : term ((PLUS | MINUS) term)+ ; This paper aims at reducing tangling and duplication in annotated grammars.
term : factor ((MULT | DIV) factor)s ; high-level view of our approach is illustrated in Figure 1 (right side): the
factor : INT | (' expr /)’ 1 idea is to separate the annotations from the grammar by employing the
Listing 1.1. Grammar for arithmetic expressions ples similar to those behind the AspectJ language (8], this leads to a notion
. L a grammatical aspect. Our approach is implemented in an open-source tool
d GRAMMATIC!.

expr returns [int result] - In Section 2 we briefly describe the main notions of aspect-oriented program-
t=term {result = t;} uing in AspectJ. An overview of grammatical aspects and related concepts is
({int sign = 1;} (PLUS | MINUS {sign = -1;}) ; in Section 3. Section 4 studies the applications of GRAMMATIC to generat-
t=term {result += sign * t;})«; o syntax highlighters and pretty-printers on the basis of a common grammar.
Listing 1.2. Annotated grammar rule We analyze these applications and evaluate our approach in Section 5. Related
is described in Section 6. Section 7 summarises the contribution of the

per and introduces possible directions of the future work.

’

As can be seen, the context-free grammar rule is not easily readable in List- !
ing 1.2 because of the actions’ code interfering with the grammar notation. This - Background
problem is common for annotated grammars. We will refer to it as tangled gram- :
mars. pect-Oriented Programming (AOP) is a body of techniques aimed at increas-
modularity in general-purpose programming languages by separating cross-
g concerns. Our approach is inspired by AspectJ [8], an aspect-oriented
xtension of Java.

‘AspectJ allows a developer to extract the functionality that is scattered
icross different classes into modules called aspects. At compilation- or run-time
s functionality is weaved back into the system. The places where code can be
d are called join points. Typical examples of join points are a method entry
nt, an assignment to a field, a method call.

“AspectJ uses pointcuts — special constructs that describe collections of join
points to weave the same piece of code into many places. Pointcuts describe
iethod and field signatures using patterns for names and types. For example,
following pointcut captures calls of all public get -methods in the subclasses
the class Example which return int and have no arguments:

Grammar

Grammar Grammar I*

Annotations 1 r Aspect Highlighter >mumnw

+
Annotations 2

Unreadable =

4

m..m@._uwiﬁmﬂ; mv\amxIa:__@EQ
Generator Generator Generator

Syntax Imo:__.mzm.m

Pretty-Printer Syntax Highlighter Pretty-Printer Syntax Highlighter

pointcut getter() : call(public int Example+.gets ())
Fig. 1. Generating two supporting tools for the same language :

= s 5 & SESE The code snippets attached to a pointcut are called advice; they are weaved
to every join point that matches the pointcut. For instance, the following advice
writes a log record after every join point matched by the pointcut above:

In most applications we need to create several supporting tools for the same

language (see Figure 1, left side). In such a case one uses different generators to i after () : getter() {
obtain different programs (e.g., PRETZEL [3] to build a pretty-printer and XTEXT _ Log.write ("A get method called");
[1] to create an Eclipse editor). Each generator requires its own specific set of] }
mwbog.ﬁoam, and the mm<£ow e Hias %o write the Same grammar m.m<w5~ tme -~ In this example the pointcut is designated by its name, getter, that follows the
with different annotations for each generator. Besides the duplication of effort, B X o .

. . . o keyword after which denotes the position for the code to be weaved into. An
when the language evolves, this may lead to inconsistent changes in different 8pect is basically a unit comprising of a number of such pointeut-advice pairs
copies of the grammar, which may cause issues which are hard to detect. We P Y P & P pairs.

. . S 1.
will refer to this problem as grammar duplication. ! The tool is available at http://grammatic.googlecode.com

S — e —————— B o L B N A e

94 A. Breslay

3 Overview of the approach

GRAMMATIC employs the principles of AOP in order to tackle the problems of
tangling and duplication in annotated grammars. We will use the grammar from
Listing 1.1 and the annotated rule from Listing 1.2 to illustrate how the terms
such as “pointcut” and “advice” are embodied for annotated grammars.

3.1 Grammatical join points

Figure 2 shows a structured representation (a syntax diagram) of the annotated
rule from Listing 1.2. It shows the annotations attached to a symbol definition

0 . ‘o,

returns [intresult] t= {result=1t} {intsign=1;} ({sign=-1} t= {result+=sign "t}

Annotations

Fig. 2. Annotations attached to a grammar rule

expr, three symbol references: term (two times) and MINUS, and an alterna-
tive (PLUS | MINUS) (marked “alt” in the figure). All these are examples of
grammatical join points (in Figure 2 they are marked with black circles). The
full list of join point types comprises all the types of nodes of the abstract syn-
tax trees (ASTs) of the language of grammars. To avoid confusion with ASTSs
of languages defined by the grammar, we will refer to the AST of the grammar
itself as grammar tree (GT).

GRAMMATIC uses a notation for grammars which is based on the one used
by ANTLR. The only two differences are (i) in GRAMMATIC productions are
explicit and separated by “:”, and (ii) an empty string is denoted explicitly by
“#empty”. Here is the list of types of GT nodes (which are also the types of the
join points) with comments about the concrete syntax:

Grammar;
— Definitions of terminal and nonterminal symbols (grammar rules) and refer-

ences to them;
— Individual productions (a rule comprises one or more productions separated
._U.V\ «“ . ” vm
— Concatenation (sequence), Alternative (“|”), Iteration (“x”, “+”, “2”);
Empty string (“#empty”);

|

imatical Aspects for Language Descriptions 95

FitePattern
: var? symbolPattern productionPatternx ';’ ;

. /%’ NAME '=' ;
symbolPattern
G // any symbol
NAME ;
productionPattern
var? ':’ alternativePattern
e B e (...}
alternativePattern
y : sequencePattern (’|’ (sequencePattern | (var? ‘...")))« ;
lencePattern
iterationPattern+ ;
iterationPattern
. : var? atomicPattern (/' |
nMQEHommﬁﬁmHS
1 ' (' alternativePattern ')’
: symbolReferencePattern
B empty’ // empty string
: 5 iy // any sequence
_ : ‘#lex’ // any lexical literal
) : '8’ NAME ; // a variable

E Listing 1.3. Grammar of the pattern language

— Lexical literals (quoted strings).

.m grammars given in this paper (e.g., Listing 1.3) may serve as example usages
of this notation.

3.2 Grammatical pointcuts

GRAMMATIC implements pointcuts using patterns over the grammar language.
A pattern is an expression that matches a set of nodes in a GT. The syntax of
~ the pattern language is given in Listing 1.3.
The most basic form of a pattern is a direct citation from a grammar:

. expr: term ((PLUS | MINUS) term)x;
- This pattern matches a rule of exactly the same form (rule expr from List-
ing 1.1).
_ In addition to this capability the pattern language makes use of various types
of wildcards which make patterns more abstract and flexible. Table 1 summarizes
~ available wildcards and the node types they each match.
_ Consider some examples of patterns for rules from Listing 1.1:

~ — expr : {...}— arule defining a symbol “expr”, comprising any number
of any productions (in Listing 1.1 it matches only the rule for expr);

cal Aspects for Language Descriptions S

Notation|Matches any. ..
Symbol
#lex |Lexical literal
Sequence
s Nonempty set of alternatives
{...} |Nonempty set of productions
Table 1. Wildcards

3 (attribute (’;’ attribute?)=x)? '}’
B actribute ;

namespace? NAME (’=’ value)? ;

cllaracter
RN T
— # : term .. — a production for any symbol, starting with a reference to : STRING
a symbol named “term” (also matches only the rule for expr); s
: annotation

— # : # (..)+ — asymbol reference followed by a star iterating an arbitrary

sequence (matches the rules for expr and term). Qi (value | punctuation)s '}}’

: <additionalValueTypes> ;

The pattern language also supports variables: a part of a pattern may be

associated with a name which may be used later in the same pattern, for example: S A L S A - L B L B B B
: Str=# ((PLUS | MINUS) $tr)= SR I S R Bl N B S S L A S e W
_ ’ , ’ _ ot _ ’ \~ _ - _ It _ st ;

Here the variable $tr is defined with the pattern # (any symbol) which means
that all usages of the variable will match only occurrences of the same sym-
bol. This pattern matches the rule for expr because the same symbol term is
referenced in the positions matched by the variable $tr.

Note that in general a variable is bound to a set of GT nodes: if we match
the rule for expr against the pattern in the example above, the variable $tr
will be bound to a set comprised by two distinct references to the symbol term.

Listing 1.4. Grammar of the advice language

For example, the annotations in Figure 2 may be represented as values of
ype String (other representations are also possible).

As the usage of the term “attribute” may be misleading in this context, we
1d like to note that the approach presented here does not directly correspond
ttribute grammars [9]. In fact, grammars with annotations do not have any
icular execution semantics (each generator interprets the annotations in its
wn way), as opposed to attributed grammars which have a fixed execution
antics. One can describe attribute grammars using GRAMMATIC and define
sponding semantics in a generator, but this is just an example application.

3.3 Grammatical advice

Annotations attached to grammars (they are analogous to Aspect]’s advice) may
have an arbitrarily complicated structure: in general, a generator may need a very
rich annotation system. GRAMMATIC provides a generic annotalion language,
which represents the annotations as sets of name-value pairs (see Listing 1.4)
which we call attributes. Examples of such pairs are given in Table 2 which shows
all the predefined value types. Values may also have user-defined types which
can be plugged into the position marked by <additionalValueTypes> in
the grammar.

Grammatical aspects

w, having described all the components, we can assemble a grammatical aspect
a set of pointcuts-advice pairs. Usage of grammatical aspects is illustrated by
e 1 (right side).

Example Value type The syntax of grammatical aspects is given in Listing 1.5. An aspect con-
int=10 Integer s of an optional grammar annotation and zero or more annotation rules.
str = "Hello’ String Annotation rules associate grammatical pointcuts (rule patterns) with advice
id = SomeName Name literal mnotations). Here is an example of an annotation rule:
rec={b = ¢; d = 5} |Annotation ., .
seq={{1, a b str’}} |Sequence of values expr : Str=# (.. Str)s // @owﬂnncw (pattern)

Table 2. Predefined value types ‘ Str.varName = ‘t’ ; // advice (annotation)
In a simple case exemplified here, an annotation (.varName = ‘t’, the al-

rnative syntax is {varName = ‘t’}) is attached to GT nodes to which a

98 Aspects for Language Descriptions . 99

aspect h a message will be generated for the grammar from Listing 1.1 because

n matches two rules: expr and term, which violates the specified
L8] 81

grammarAnnotation? annotationRulesx ;
grammarAnnotation

annotation ;
annotationRule }

multiplicity? rulePattern subrules ; sneration-time behaviour
subrules

(subpattern | variableAnnotation)sx ; cal aspects are applied at generation time. Before a generator starts
subpattern in order to prepare the data for it, GRAMMATIC performs the following

'@ multiplicity? (productionPattern | alternativePattern

'./ (subrules | annotation) ;

variableAnnotation
r$’ NAME annotation ;

the grammar and the aspect
h the grammar annotation to the root node of the grammar

multiplicity or each annotation rule in aspect

* [’ intOrInfinity (’..’ intOrInfinity)? ']’ ; e call APPLYPATTERN(rule pattern, grammar)
intOrInfinity

INT | "%’ ;

APPLYPATTERN is a recursive subroutine defined by the following pseu-
Listing 1.5. Grammar of the aspect language ‘
LYPATTERN (pattern, node) is

find subnodes matching pattern among descendants of node
(Variable bindings are saved in boundTo map)
if the number of subnodes violates pattern.multiplicity
e Report error and stop
- for each subnode in subnodes
e for each subpattern in pattern.subpatterns

variable ($tr) is bound. For more complicated cases, one can define subpatters
— patterns which are matched against nodes situated under the matched one
in the GQT. For example, the following construct attaches an attribute name
varName to each reference to the symbol term inside a rule matched by a
top-level pattern:

expr i . . // pointuct (pattern) b % call APPLYPATTERN(subpattern, subnode)
@$tr=(term) : // pointcut (subpattern) e for each var in pattern.variables
g$tr.varName = 't’ ; // advice (annotation) % for each boundNode in boundTo (var)

This example illustrates the typical usage of subpatters where all annotations are: Qi war . anmotation o boundNeds

associated with a variable bound to the whole pattern. As a shorthand for this
situation GRAMMATIC allows to omit the variable (it will be created implicitly).

Using this shorthand we can abridge the previous example to the following: nermost loop goes through the set of GT nodes to which the variable

bound (see Section 3) and attaches the annotations associated with this
e to each of these nodes.

error was reported, the resulting structure (GT nodes with attached
ons) is passed to the generator which processes it as a whole and needs
formation about aspects.

Thus, GRAMMATIC works as a front-end for generators that use its APL. To
pre-existing tool, for example, ANTLR, with grammatical aspects, one can
oy a small generator which calls GRAMMATIC to apply aspects to grammars,
produces annotated grammars in the ANTLR format.

expr
eterm: { varName = ‘t’ } ; // '{ a = b }’ equals '.a = Db’

Note that subpatterns may have their own subpatterns.
Patterns and subpatterns may be preceded by a multiplicity directive, for
example

[0..1] # : Str=# (.. $tr)+ // pointcut with multiplicity

// some advice
,

Multiplicity determines a number of times the pattern is allowed to match. The
default multiplicity is [1..+] which means that each pattern with no explicit
multiplicity is allowed to match one or more times. When an aspect is applied to
a grammar, if the actual number of matches goes beyond the range allowed by a
multiplicity directive, GRAMMATIC generates an error message. In the example

A pplications

his section we show how one can make use of grammatical aspects when gen-
ating syntax highlighters and pretty-printers on the basis of the same grammar.

100 matical Aspects for rwzm:mmn Descriptions 101

normalClassDeclaration ‘class’ IDENTIFIER
"class’ IDENTIFIER typeParameters? i @#lex: { group = keyword o
("extends’ type)? (’implements’ typeList)? classBody @IDENTIFIER: { group = classDeclaration } ;
classBody eParameter : IDENTIFIER
: '{’ classBodyDeclarationx '}’ ; @#lex: { group = keyword } ;
typeParameters . _DHUMZHHmHmm" A group = typeParameterDeclaration } ;
"<’ typeParameter (’,’ typeParameter)s ’>’ ; Argument : {...}
typeParameter : _wﬁwmxn { group = keyword ek
IDENTIFIER (’extends’ bound)? ; @ { group = typeParameterDeclaration } o
bound Listing 1.7. Highlighting aspect for class declarations in Java
type ('&’ type)x ;
type
IDENTIFIER typeArgs? (’.’ IDENTIFIER typeArgs?)«* (' [’
basicType ;
typeArgs
"<’ typeArgument (’,’ typeArgument)sx >’

h annotation rule from Listing 1.7 contains two subpatterns. The first one

x: it matches every lexical literal. For example, for the first rule it matches

typeArgument ss’, ‘extends’ and 'implements’; the highlighting group keyword
type 1SSig ned to all these literals.

21 (('extends’ | ‘super’) type)? ; e second subpattern in each annotation rule is used to set a corresponding
shting group for a declaring occurrence: for classes and type parameters it
es IDENTIFIER and for wildcards — the ’ 2’ literal.

Vhen the aspect is applied to the grammar, GRAMMATIC attaches the group
ribute to the GT nodes matched by the patterns in the aspect. The obtained
4.1 Specifying syntax highlighters ated grammar is processed by a generator which produces code for a high-

Listing 1.6. Class declaration syntax in Java 5

A syntax highlighter generator creates a highlighting add-on for an IDE, such
as a script for vim editor or a plug-in for Eclipse. For all targets the sa
specification language is used: we annotate a grammar with highlighting groups
which are assigned to occurrences of terminals. Each group may have its ow
color attributes when displayed. Common examples of highlighting groups are
keyword, number, punctuation.

In many cases syntax highlighters use only lexical analysis, but it is also pos
sible to employ light-weight parsers [11]. In such a case grammatical informatio
is essential for a definition of the highlighter. Below we develop an aspect for th
Java grammar which defines groups for keywords and for declaring occurrences
of class names and type parameters. A declaring occurrence is the first occur-
rence of a name in the program; all the following occurrences of that name ar
references. Consider the following example:

class Example<A, B extends A> implements Some<? super B>

Specifying pretty-printers

ipplying a different aspect to the same grammar (Listing 1.6), one can spec-
a pretty-printer for Java. A pretty-printer generator relies on annotations
bing how tokens should be aligned by inserting whitespace between them.
1 Listing 1.8 these annotations are given in the form of attributes before
after, which specify whitespace to be inserted into corresponding positions.
es of the attributes are sequences ({{ ...}}) of strings and name literals
easeIndent and decreaseIndent which control the current level of
tation.

[he most widely used values of before and after are specified in a gram-
annotation by attributes defaultBefore and defaultAfter respec-

v, and not specified for each token individually. In Listing 1.8 the default
This illustrates how the generated syntax highlighter should work: the declar- ormatting puts nothing before each token and a space — after each token; it

ing occurrences are underlined (occurrences of ? are always declaring) and th yplies whenever no value was set explicitly.
keywords are shown in bold. This kind of highlighting is helpful especially while it
developing complicated generic signatures. X]
Listing 1.6 shows a fragment of the Java grammar [4] which describes class 5 Discussion
declarations and type parameters. In Listing 1.7 we provide a grammatical aspect
which defines three highlighting groups: keyword, classDeclaration and typePa- This paper aims at coping with two problems: tangled grammars and grammar
rameterDeclaration, for join points inside these rules. duplication. When using GRAMMATIC, a single annotated grammar is replaced

102 matical Aspects for Language Descriptions 103

{ // Grammar annotation
defaultAfter = {{ * ’

BElass [DENTIFIER (‘extends’ type)?

b
defaultBefore = {{ "’ }}; ("implements’ typeList)? classBody ;

Listing 1.9. Class declaration rule in Java 1.4
classBody : '{’ classBodyDeclarationx '}’

@ {': { after = {{ ’'\n’ increaseIndent }} } ;
@classBodyDeclaration: { after = {{ '\n’ }} } ;

lassDeclaration was renamed to normalClassDeclaration) and
ar}ra al changes to the right-hand side (type parameters were introduced
before = [{ fAevresselodent “yu' Ji1 5). The only requirement is that the definition should start with the
after = {{ "\n’ }};
b s’ keyword followed by the IDENTIFIER. .
typeParameters : ‘<’ typeParameter (', typeParameter)+ '’ AOP, the duplication of effort needed to modify pointcuts when the main
@<': { after = {{ ' }} } : m changes is referred to as the fragile pointcut problem [14]. Wildcards and
@typeParameter: { after = {{ "’ }} } ; tterns make pointcuts more abstract, in other words, they widen the range
points matched by the pointcuts. From this point of view, wildcards help
tract over the contents of the rule, and subpatterns — over the positions
ticular elements within the rule. The more abstract a pointcut is, the less
on it presents and the less fragile it is.
most abstract pointcut does not introduce any duplication and is not
at all. Unfortunately, it is also of no use, since it matches any possible join
This means that eliminating the duplication completely from patterns is
nically possible. Fortunately, we do not want this: if no information about
mar is present in an aspect, this makes it much less readable because the
der has no clue about how the annotations are connected to the grammar.
us, there is a trade-off between the readability and duplication in grammatical
pects and a developer should keep pointcuts as abstract as it is possible without
) o) . naging readability.

From the perspective of grammar duplication, the worst case is an aspec fo summarize, our approach allows one to keep a context-free grammar com-
where all the patterns are exact citations from the grammar (no wildcards are clean by moving annotations to aspects and to avoid any unnecessary
used, see Listing 1.8). This means that a large part of the grammar is completel ation by using abstract pointcuts.
duplicated by those patterns. But if we compare this with the case of conventiona
annotated grammars, there still is at least one advantage of using GRAMMATIC
Consider the scenario when the grammar has to be changed. In case of conven-
tional annotated grammars, the same changes must be performed once for each
instance of the grammar and there is a risk of inconsistent changes which are al attribute grammar (AG) systems, namely JASTADD [5], SILVER [15] and
not reported to the user. In GRAMMATIC, on the other hand, a developer can . [13], successfully use aspects to attach attribute evaluation productions
control this using multiplicities: for example, check if the patterns do not match text-free grammar rules. AGs are a generic language for specifying com-
anything in the grammar and report it (since the default multiplicities require tations on ASTs. They are well-suited for tasks such as specifying translators
each pattern to match at least once, this will be done automatically). Thus, even general, which require a lot of expressive power. But the existence of more
in the worst case, grammatical aspects make development less error-prone. sblem-oriented tools such as PRETZEL [3] suggests that the generic formalism

Using wildcards and subpatterns as it is done in Listing 1.7 (i) reduces the (Gs may not be the perfect tool for problems like generating pretty-printers.
duplication and (ii) makes a good chance that the patterns will not need to | fact, to specify a pretty-printer with AGs one has to produce a lot of boiler-
be changed when the grammar ommsmmm. For example, consider the first an- late code for converting an AST into a string in concrete syntax. As we have
notation rule from Listing 1.7: this rule works properly for both Java ver hown in Section 4, GRAMMATIC facilitates creation of such problem-oriented
sion 1.4 and version 5 (see Listing 1.9 and Listing 1.6 respectively). The point- ools providing the syntactical means (grammatical aspects) to avoid tangled
cut used in this rule is sustainable against renaming the symbol on the left-hand grammars and unnecessary duplication.

Listing 1.8. Pretty-printing aspect for class declarations in Java

by a pure context-free grammar and a set of grammatical aspects. This mean
that the problem of tangled grammars is successfully addressed.

This also means that the grammar is written down only once even whe
several aspects are applied (see the previous section). But if we look at the
aspects, we see that the patterns carry on some extracts from the gramma
thus it is not so obvious whether our approach helps against the problem
duplication or not. Let us examine this in more details using the examples from
the previous section.

104 A. Bresla atical Aspects for Language Descriptions 105

The MPS [6] project (which lies outside the domain of textual languages
since the editors in MPS work directly on ASTs) implements the approach
which is very close to ours. It uses aspects attached to the concept langua
(which describes abstract syntax of MPS languages) to provide input data
generators. The implementation of aspects in MPS is very different from the one
in GRAMMATIC: it does not use pointcuts and performs all the checking while
the aspects are created. ety

.) ix Gartner. The PretzelBook. Available online at
There is another approach to the problems we address: parser generators su 3 .
. p://www.informatik.tu-darmstadt.de/BS/Gaertner/pretzel/
as SABLECC [2] and ANTLR [12] can work on annotation-free grammars an R on April 28, 2010), 1998
produce parsers that build ASTs @sﬁogmﬂo@:%. In this way the Uaogmﬂm induced mes Gosling, Bill Joy, m:% m@w,&mv mH.E Gilad Bracha. The Java Language Spec-
by using annotations are avoided. The disadvantage of this approach is that the cation, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition, June
ASTs must be processed manually in a general-purpose programming language, 005.
which makes the development process less formal and thus more error-prone. .. Gorel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler construc-
n system. Science of Computer Programming, 47(1):37-58, 2003.
Brains. Meta Programming System (MPS).
http://www.Jjetbrains.com/mps, 2009.
. Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, Bell
Laboratories, 1979.
egor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
Villiam G. Griswold. An overview of Aspect]. In ECOOP ’01: Proceedings of
e 15th European Conference on Object-Oriented Programming, pages 327-353,
London, UK, 2001. Springer-Verlag.
- Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127-145, June 1968.
Ralf Limmel. Grammar adaptation. In José Nuno Oliveira and Pamela Zave,
~editors, FME, volume 2021 of Lecture Notes in Computer Science, pages 550-570.
~ Springer, 2001.
. Leon Moonen. Generating robust parsers using island grammars. In WCRE
‘01: Proceedings of the FEighth Working Conference on Reverse FEngineering
- (WCRE’01), page 13, Washington, DC, USA, 2001. IEEE Computer Society.
Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
- guages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.
. Damijan Rebernak and Marjan Mernik. A tool for compiler construction based
~ on aspect-oriented specifications. In COMPSAGC *07: Proceedings of the 31st An-
nual International Computer Software and Applications Conference, pages 11-16,
~ Washington, DC, USA, 2007. IEEE Computer Society.
| Maximilian Storzer and Christian Koppen. PCDiff: Attacking the fragile point-
- cut problem. In Furopean Interactive Workshop on Aspects in Software, Berlin,
~ Germany, September 2004.
5. Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an extensible
attribute grammar system. ENTCS, 203(2):103-116, 2008.

Eclipse Foundation. Xtext. http://www.eclipse.org/Xtext, 2009.

nne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented com-
framework. In TOOLS °98: Proceedings of the Technology of Object-Oriented
nguages and Systems, page 140, Washington, DC, USA, 1998. IEEE Computer

7 Conclusion

Annotated grammars are widely used to specify inputs for various generators:
which produce language support tools. In this paper we have addressed th
problems of tangling and duplication in annotated grammars. Both problen
affect maintainability of the grammars: tangled grammars take more effort t
understand, and duplication, besides the need to make every change twice
the language evolves, may lead to inconsistent changes in different copies of the
same grammar.

We have introduced grammatical aspects and showed how they may be used to
cope with these problems by separating context-free grammars from annotations.

The primary contribution of this paper is a tool named GRAMMATIC which
implements an aspect-oriented approach to specification of annotated grammars.
GRAMMATIC provides languages for specifying grammatical pointcuts, advice
and aspects.

We have demonstrated how GRAMMATIC may be used to generate a syntax
highlighter and a pretty-printer by applying two different aspects to the same
grammar. We have shown that grammatical aspects help to “untangle” gram-
mars from annotations, and eliminate the unnecessary duplication. The possible
negative impact of remaining duplication (necessary to keep the aspects read-
able) can be addressed in two ways: (i) abstract patterns reduce the amount of
changes in aspects per change in the grammar, and (ii) multiplicities help to
detect inconsistencies at generation time.

Omne possible way to continue this work is to support grammar adaptation
techniques [10] in GRAMMATIC to facilitate rephrasing of syntax definitions
(e.g., left factoring or encoding priorities of binary operations) to satisfy re-
quirements of particular parsing algorithms.

Another possible direction is to generalize the presented approach to support
not only grammars, but also other types of declarative languages used as inputs
for generators, such as UML or XSD.

~ Information Systems
| | Integration

i

