470

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

Piho, G., Tepandi, J., Parman M., Perkins, D.: From arche
clinical laboratory to LIMS software. 33rd International Con
Communication Technology, Electronics and Microelectronics
May 24-28, accepted paper (2010)
Piho, G., Roost, M., Perkins, D., Tepandi, J.: Towards
development. In: International Joint Conferences on Computer,
Sciences, and Engineering (CISSE 09), December 4 -12, accepted
Piho, G.: Towards Archetypes and Archetype Patterns Based S
Techniques of Domains, Requirements and Software. In: Nordic
symposium on dependability and security (NODES), Magnuse, Es
Bjorner, D.: Domain Theory: Practice and Theories (A Discussion
Topics). In: 4thInternational Colloquium on Theoretical Aspects o
Macau SAR, China, (2007))
Bjormer, D.: Software Engineering, vol. 1; Abstraction and Modeling,
Bjorner, D.: Software Engineering, vol. 2: Specifications of Sy:
Springer (2006)

Bjorner, D.: Software Engineering, vol. 3: Domains, Requi
Design, Springer (2006)
Zachman, J. A.: A Framework for Information Systems Archite
Journal. vol. 26, 3 (1987) _
Tepandj, J., Piho, G., Liiv, I Domain Engineering for Cyber Defe!
Implications. In: CCDCOE Conference on Cyber Conflict, Tallinn,
Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2!
Evans, E.: Domain-Driven Design: Talking Complexity in the Heart
Wesley (2004) _
Zachman,J. A.: The Framework for Enterprise Architecture — Cell Defi
Zachman, J. A.: The Zachman Framework: A Primer for Ente
Manufacturing. (2003)

ASTM, E1578-06 Standard Guide for Laboratory Information
(LIMS). ASTM International (2006)

Software Process
Improvement

.im;m.o [the Ninth International Baltic Oouwolm.mnoo — Baltic DB&IS 2010

Comparison of Plan-driven and Agile Project
anagement Approaches: Theoretical Bases for a Case
2 Study in Estonian Software Industry

Marion Lepmets' and Margus Nael®

'Tnstitute of Cybernetics at Tallinn University of Technology
marion.lepmets@ttu.ee

¥ *Tallinn University of Technology, Department of Computer Engineering

margus.naellgmail.com

bstract. There is evidence that Scrum could benefit from additional plan-

en practices of defined processes that address the organizational context.
€ question remains however how to add the plan-driven practices without
sing the agility of Scrum and increasing the project performance. This paper
escribes the preparatory phase of the research that aims to evaluate the tailored
roject management process in industry. First, we compare the plan-driven
Pproject management practices derived from the process models of CMMI and
ISO/IEC 15504, the PMBOK, project management literature with the Scrum
practices from the case company. We then evaluate the comparison addressing
the concerns of using Scrum in industry focusing on the value the plan-driven

actices would have in agile environment, Finally, we propose a tailored

_project management process and suggest measures for evaluating the process in
an industry case study.

- Keywords: Scrum, CMMI, ISO/TEC 15504, PMBOoK, project management,
plan-driven methods.

Introduction

software development is a way of organizing the development process,
izing direct and frequent communication — preferably face-to-face, frequent
) of working software increments, short iterations, active customer
ement throughout the whole development life-cycle and change responsiveness
r than change avoidance. Agile software development can be seen as a
ophy and several defined methods based on these ideas are in use, all sharing a
lon set of values and principles. The best known and most used agile methods
xtreme Programming (XP) and Scrum [1]. The goal of agile software
ment is to increase the ability to react and respond to changing business,
mer and technological needs at all organizational levels. Agile software
ment methods are used in a hope of nearing toward this goal [2]. Agile
have been applied in industry for many years now without them being given

474

arison of Plan-driven and Agile Project Management Approaches ..

475

much attention in research [3]. In ocm MmMoM %\o are MWMN MM Mﬂ__ .w mww)
i i blished fields in so eering
how agile practices relate to esta . nesli
j tices of a software developm
lating Scrum project Bmﬂmmoﬁmﬁ practic . n
H,M:r H%@ already established practices of mno_ooﬁ management WOMMQ 3
Scrum has attracted significant attention among mo?zmaﬂ @ac
five years. Whereas the Extreme Programming method Ewﬁ .ﬁmm H.HH,
as one of the most important agile mﬁ?omormm has a aom inite W« mm
Scrum concentrates on managing mo?zm.qn projects [4]. %:EH_Q =
Ken Schwaber and starts with the premise that mmmémao : mo_<mw nﬂc E‘mm t
i d exactly in advance [3]. im 1S an
and unpredictable to be planne otl [l S
ibili bility and productivity. :
roach based on flexibility, adapta oA
Mm\w&owﬂm to choose the specific momémao.am/\%_owawgﬁ MMNSMM_E.@
i implementation process. It invo ves freque 1agemer . b+
w.ﬁmo.”oommm Moh:wwwﬁmmwwmmnamﬁ:m any deficiencies or impediments in “wou - Background and Motivation
mi 1 :
m:aooowm as well as in the practices that are #.Hmna [2]. The nusaoazﬁw
wmamzom like time frame, quality, requirements, resSOUICes mu
controlled constantly in order to be able to adapt to changes flexibly.
through an iterative and incremental aw<o._omBoE process. 2 nm.p
It is argued that focusing on people will improve software produ +
[3]. That is exactly what agile does and ,\,\.3N it has vomoB@ mOﬁ vcw _wﬂ
QE.@ agile methods generally lack practices Eﬁ mﬁamsoo. or plen
mcwmoazm an agile approach across the organization. It 1s mumcoaﬁ - :
implementation will not “stick” without an QmeNmﬂozw__ Mow m: .
process definitions that are described in Om@mgwﬁ% ZM.HE%W zocw M .
it i ility without discip
Boehm and Turner put it in [7] agi : -
o%ﬁﬂcmwmmB of a startup company before it wmm to turn a Eom_m. M&% MM
driven methods approach development with standard, well-defini |

uestion remains how to tailor it so that the best practices of the process models

ed to Scrum without losing the agility in its software project management.
he aim of this research is to find out whether combining the practices of plan-
and agile methods in project management will increase project performance. In
eI {0 attain the aim of the study, a comparison of project management practices
carried out based on process models of CMMI for Development v.1.2 [9], IS
)4 [10], Project Management Body of Knowledge (PMBoK) of PMI [1 1] and the
- management practices from Scrum environment. The measures of project
ormance are also suggested which will be used for evaluating the tailored Scrum
in industry. This paper illustrates the first phase of the research in which the

S for tailoring Scrum project management process is provided.

&

Im is a product-centered and teamwork oriented way of working that does not
Tibe rules or activities about project initiation or finalizing. Most of the tasks in a

e development project are assigned and completed within the team. Glazer et
m in [6] that agile methods do not have an organizational context that is
ribed in CMML Organizational context supports a long-term view of process

ion across the enterprise as a whole. For example, knowledge sharing on
ational level through project postmortem reviews would increase the project
ormance of future projects. The goal of the postmortem reviews is to transfer the
riences of project teams into immediate and concrete software process
rovements [12]. The retrospective meetings of Scrum are carried out within the
n after every iteration, but no retrospective meeting is held after the development

is finished. The postmortem review at the end of the entire development
. . continuously allows dissemination of project’s experiences to wider audience of developers
organizations improve . . . ic fi : b ! i

mmo?zmao process improvement (SPI) is an applied academic nagers in the organization. As long as the causes of failed projects are not

software engineering and information systems &mohwwp:mm, ,M,Eo@ MNM been s h. WM M_MMMNMMMMMMH owwﬁwﬂwmw%m“ s by e oo I o s
imarily with the professio ., 9 or0; .
almost twenty years now. It deals primari

. : ice, displaying the n n-driven methods are characterized by heavy upfront planning,
the improvement of their practice, : / B . ; A
wMM.MWM:MMMMbMM&EM E:W the techniques that are used to write software ability and documentation. Scrum, on the other hand, relies on tacit knowledge

d s assessment where practices of a software company a team as opposed to documentation [7]. There are no budget and status reports
based on proces

against the requirements and practices of process Boa&m.aﬁrom NMM Mﬁ i M: moMzBEoMMMo:EmE for wawmﬂ.owm Ho”woému:moﬂoxmwﬁmw.,_ Z_Hroﬂmr ﬁ_o
om process models for assessing and improving software develop are departme company might share the cultural values similar to agile

S : el Integration) for Develo iples, which is necessary for successful adoption of agile methods [14] and the
ppoilos. CHNIMC AOm@wgmum\ow\wmﬁmww\ﬁﬁomwgq HmMuEmO 15288 are onl lagement approve the adoption of agile methods, the members of the board and
9001, ISO/IEC 15504 (IS 5 ' focused on IS 15504 and CMMI as they a ement might still want to bring themselves up-to-date with the development
the popular ones. F TGS AR cess assessment purposes. IS 15504 is jects of the company through various progress reports. For mutual understanding
used in software industry for @Homm assessment at the moment. CMMI ut the project progress, there is a need for standardized indication for the effort,
5852.85& standard mMH ﬂﬁ%\o@ time, has evolved from the concepts of d budget consumed in the project at any certain time. This kind of deliverables
c:mmz.u:um ideas rm<mr@c cmmm developed mw Software Engineering Institute a project status reports have been described in detail as a part of project
maturity framework that é_ ol ' ement process in the plan-driven methods.

1986 and is used .oxﬁosm:\m Y oocm.a be tailored to be more compliant with ese examples are valid in our case company and are supported by relevant
. 7\”@ Wzmm MS_SM mwsﬁm%%%m.“wow by adding some Scrum practices on their literature motivating this study in tailoring Scrum activities with defined

mode

cesses of project management.

(]

focus on

d

ymparison of Plan-driven and A

gile Project Management Ap proaches .. 477

3 Related Research Research Method

There is currently a lot of research conducted on software process imj etz il

plan-driven software development but it is argued in [3] that agile methods D Basd o (5]t e v ceets i 1

given :E@ attention in Hnmnmaor despite them having gained :.:.E , ructive approach - first Eoormowmm& on .:M.: there are two processes in the
They claim that management oriented approaches such as Scrum is an J d second, the process of ” QQ.M&:MW ro%écc:ﬁ:mrm construct, artifact or model;
well the construct, artifact or q

’ model

area where there is a large gap between industrial monm@ﬁ:ow é~, BHils' stildy we: compare :
research. HSQ &.mo mmmmoﬁ research to c:moﬁmnsa. how various p m process and set the Eomm:mom : e Eemo.ﬂ EmzmmmEmE practices, tailor the
recommendations in agile development relate to established fields on vario studies. or evaluating the tailored process in industry
like project management. - this re -

The current research addresses both the topic of agile software ctices :mwmﬂmrcwrmoHMHMMMMo%M%MQm. from EmnﬁQ where additional plan-driven
method Scrum and the established field of project management. The la nation accuracy and o et elr mo.EE practices in order to improve their
based on literature review, the PMBoK and process models of soft The case company in our mmm e m womﬁ.sam development.
improvement area, described in greater detail in [15]. The detailed practice pany that has applied Scrum mv\ Mm a medium-sized [19] software development
are described based on MmEB rules of Scrum alliance [16] &mﬂ are B since. The Rt iive mo%.ww mmﬂm:om:v\ from .NOOm and in four development
software development projects of the case company. We describe beld oject has been six months, A © team has been five people and the average size
research articles that are closely related to this study, focusing on 0 B the SBapanyas : m:?.mv\ among t
specifically, Scrum, and the process models. _ : Y has resulted in a set of ¢

Tor and Hanssen describe the potential benefits of combining ISO9001 o i
methods in [1]. They conclude EMH the main difference coﬁéoo:meO, 9(duestions were open-ended and targeted t
methods is that ISO 9001 insists on documentation for reviews and to ¢ 3

process conformity. Agile methods try to avoid writing documents that ‘V....H(omna missing im, . e ot the gy s 0
contribute to the finished system. On the other hand — if the customer > project QQE._% H:mo“ﬁwwoﬂ”%%w%%%m%mw%wwmro@Emcmem o mm
at the biggest impediment of the

certain document, the use of agile methods are no hindrance for develo n-cen ; X

Glazer et al. have written mmm@o: [6] about embracing both CMMI 2 entered Scrum process is that it does not
they claim that combining the benefits of agile and CMMI will dramati
business performance. The report describes in detail CMMI and the agi
providing a thorough paradigm comparison and concludes that practiti
make the best use they can of both of these paradigms to encounter the b
their project and organization. This report is a general description of t
and is not aiming to describe any agile method in particular. After ha
both paradigms, it suggests that there should be benefits in using a cor
them.

Margal et al. have mapped the project management practices of CMM! ey
in [4]. Their paper shows how Scrum addresses the process areas any. We then illustrate the s .
memwnama o %OW\HZH P . .__ ’ . set of plan-driven project management practices that

Turner and Jain described the results of a workshop activity in [17]
characteristic of two approaches, agile and CMMI were compared, resull
broad mapping between the two approaches. The comparison was made by
whose members had expertise in both agile and CMMI and remains on the s
of abstraction as the paper by Margal et al.

These mappings provide valuable insight into the differences and si
two paradigms. Our study differs from the previous ones as we take
from the conceptual to the practice level.

support information spreading outside

Comparison of Scrum and Plan

- Practices -driven Project Management

, roles and artifacts. We also

_ 1 practices of Scrum th
Yy using Scrum in their development projects i S el i e g

m i a product-centered peo
lies iterative and incremental
' SCIUM process is transparent
highest predictability. The Scr

the cc
ple-oriented @mﬂo.&oﬂw for project management. It
approach to optimize the risks and predictability.

Msa ma @o@:nzﬁ. deliveries and inspections ensure
m framework includes roles, rules, artifacts and

ison of Plan-driven and Agile Project Management Approaches .. 479

478

The iterative part of the project is the sprint, which contains the following
livities: the sprint planning meeting, the development work, the sprint review and
print retrospective. The sprint planning meeting is held to set the sprint goal, i.e.
and how the development work will be carried out. The sprint goal is the subset
release goal and is set according to the data of various inputs like the product
Klog, the latest increment of the product, the capability and the past performance
team.

he product backlog is a list of all features, technologies, functions and
ovements that will be made to the product. Product backlog is evolving
tantly through the time. Every item in the product backlog is described through
e attributes: the description of the item, priority of the item and an estimate for the
being developed.

nly the team decides what and how the work is done in the sprint. Sprint review
informal meeting where the team and stakeholders describe what was done and
should be done next. The sprint retrospective meeting is for process
vements as the team decides what should be done better in the next sprint.
ring the development process there are daily stand-up meetings of 15 minutes
the daily Scrums. The purpose of the daily Scrums is to improve
mmunication and transparency. Bvery team member tells what he accomplished

time-boxes. Time-box is a period of time in which to moooM”EWM Mﬁmv.
activifgd is time- d thus it improves the C
tivity in Scrum is time-boxed an . i
mﬂwﬂwﬂwﬁ Mba activity has a set of rules that together will mcwmmaon W@ ich
the expected results of the project. Thus, the rules connec 0 -
ime-boxes. L
:B%:Qn are three roles in Scrum: the ScrumMaster, the waoacoﬂmn Cignn; .
ScrumMaster is responsible for managing the Scrum process. - m&m -
the team to become better in Scrum, but :og?m_mmm Ew team ; Q. 5 .
ScrumMaster is not the head of the team like a project manag i
lopment project. . . e
Qoﬂuoﬂw%:oﬁ OMSQ is the only person responsible for Bwsﬁmﬂmmm %M MM.mM- -
i isi d is the only person who te ;
He drives the product vision an . e
i is either a service, product or busines s
L ooy doy f developers who turn the product f
The team is cross-functional m.Q of develop . : .
moﬁosmm&% shippable set of functionalities. HWM HoM:B is .mwwm MHMWWHMMW i
i he list of features in
t way all by itself how to turn t !
WMMEM ﬁWo impediments and challenges as one. The best team size of

five to nine persons.

24 hours the last meeting, what he will do before the next meeting and what the

L N e ments on the way are.
Vi _ Daily Scrum] addition to roles and time-boxed activities, there are four artifacts: the product
Pl : og (PB), release burndown chart (RBD), the spring backlog (SB) and the sprint
7/ own chart (SBD). Product backlog lists the features of the product. Release
Product 7 own chart illustrates graphically the sum of remaining effort according to the
Backlog v ates in the product backlog. The Product Owner is responsible for updating the
o s . mm Sprint_ oh throughout the project. Sprint backlog lists all the tasks that the team performs
s o @ planning retrospective h the sprint goal and the sprint burndown chart describes the effort remaining

e | gﬂ the goal to be reached.
Ralbase Sprint ccording to the company in our case study, the Scrum practices can be listed
planning @.ﬂ d on the tasks of different Scrum roles and meetings. The numbers have been
— ’ d for each listed practice to make the grouping of practices easier for the
Sprint Backlog W%HWNM arison. .

L. SerumMaster (activities of)
1. Monitor sprint work (through updating sprint burndown chart)
Schedule control (through updating sprint burndown chart)
3. Remove organizational impediments that impede the Scrum
2. Product Owner
1. Create and maintain the product backlog (list of features and tasks during
duct development)
. Set priorities to every item in the product backlog
Set the acceptance criteria to every item of the product backlog
4. Do the acceptance testing to the shipped product
2.5. Update the product release burndown chart
J. Release planning
3.1.Prioritize the product backlog

Fig. 1. The Scrum process (activities in Italic, artifacts in Bold)

The Scrum process illustrated on Fig.1 oo:mwﬂmroﬁ ﬁmmwwﬁﬁwwowmﬁwoa ‘_
iod i is iterative and the 1iter .
the work period itself. The process 1s 1t the et A
i i i herein each sprint deliver g
oduct is developed iteratively, wi e
Mma riskiest features or functionality of the product. The %aoa%oowspw M&o& .n
enough sprints have been done, i.e. when enough value has
int to the product. , .
%ﬂ: the _uo%casm of the project or release there is a aoﬁawmmﬁﬁmzqﬂwmwﬁv
d ScrumMaster participate.
the team, the Product Owner an . = ThE
ing i lan and it does not take more
meeting is to set up a a&mmwm. P . |
time EM” an organization typically consumes to build a release plan

T e e

is T ‘ .
on of Plan-driven and Agile Project Management Approaches 481

3.2. Estimate the product backlog

3.3. Set the overall features and functionality that the release w
3.4. Set the goals and establish a plan for the release

3.5. Define major risks
3.6. Define probable delivery date and cost

3.7. Establish Scrum rules
4. Sprint planning

4.1. Set the sprint goal, i.e. what will be done in the sprint
4.2. Establish the spring backlog (list of task in the sprint)

4.3. Identify tasks for the sprint

4.4. Design the sprint work

4.5. Define activities to achieve the sprint goal
5. The sprint

5.1. Develop the product

5.2. Test the product

5.3. Documentation

5.4. Review of estimated remaining work (by Team members)

6. Sprint review

6.1. Product Owner acceptance tests the increment of the product

6.2. Team suggests what to do next

6.3. Review the BurnDown chart (by Product Owner)

7. Sprint retrospective

7.1.Create a prioritized list of the major items of success in the s

improve in the next sprint

7.2. Create a prioritized list of the major items of impediments for

how to remove them
8. Daily Scrum meetings
8.1. Find current risks and impediments

5.2 Plan-driven Project Management Practices

The basic project management practices of proces
described in [15] that form a part of the theoretical bases for the curren
project management and related practices were ¢ i\

15504. Project management activities were added from the PMBoK and
e set of basic project ma

sources of project management literature. Th
activities described in [15] is viewed as the set
practices in the current study.

The project management practices from process models can be viewe!
practices. They are the specific practices from the Project Planning anc
Monitoring and Control process areas of CMM], and the Project Man
practices from IS 15504. Project management activities of the PMBoK a
management literature that are not described in the process models are a
the set of plan-driven project management practices. The final set of
project management practices is grouped together with Scrum practice in
in Table 1. The method followed in grouping these practices has been de

greater detail in [15].

L 1. Groupi i
vl ping the Plan-driven and Scrum Project Management Practices

Table 1. i i
Grouping the plan-driven and Scrum project management practices

SP .~.~ Estimate the scope of the
project

2.1 Create and maintain
PB

3.7 Establish Scrum rules

ility of the project
.“.w.wms” Determine and
ain estimates for project

SP 1.2 Establish estimates of
work products and task attributes
SP 1.4 Determine estimates of

effort and cost

3.1 Prioritize PB
3.2 Estimate PB
4.1 Set the sprint goal
w.m Set the acceptance
criteria to items of PB
3.2 Estimate PB

3.6 Define probable

w . . delivery dat,
, SP 2.2 Identify project risks 3.5 Umm\:m %Ewww MM_M

- Sprint planning

: SP 2.5 Plan for needed
experience, kn ills
R owledge knowledge and skills

, SP 2.4 Plan for project resources

- SP 2. -
N.3.BP8: Identify and 3 FHan for dura Tanagerment

litor project interfaces

SP 2.1 Establish

project bud
and schedule d BeL

3.BP6: Define needs

s models have been com

.mw 2.6 Plan stakeholder
involvement

SP 2.7 Establish the project plan

ombined there from

4.1 Set the sprint goal

4.2 Establish SP

| 4.3 Identify tasks for the
sprint

4.4 Design the sprint

work

4.5 .me:n activities to

achieve the sprint goal

5. The sprint

of plan-driven project ma

SP 3.1 Review plans that affect
the project
SP 3.2 Reconcile work and
resource levels

-omparison

SP 3.3 Obtain plan commitment

onciling work and resource levels, reviewi

SP 1.1 Monitor project planning
parameters

MAN.3.BP12: Monitor
project attributes

ng plans that affect the project) but they
e not been explicitly described as practices.

The unknown practices of Scrum not covered by ScrumMaster responsibilities nor

SP 1.2 Monitor commitments

essed in daily Scrum meetings are about planning and monitoring the data

SP 1.3 Monitor project risks

nagement described in CMMI and pr

SP 1.4 Monitor data management

SP 1.5 Monitor stakeholder
involvement

MAN.3.BP13: Review SP 1.6 Conduct progress reviews

progress of the project

oject finalizing described in the PMBoK.
8.1 Find 4 management includes the processes and systems that plan for, acquire and
and imped rovide stewardship for business and technical data throughout the data life-cycle [9].
7.2 List im € practice of data management addresses the organizational level and requires
gorous planning and monitoring that is too heavy for an agile method. The practices
rules defined in Scrum contribute for good communication and promote
laboration between team and stakeholders, project information is shared in

6.3 Review tings or document available

5.4 Review

remaining

to everyone [4]. Scrum relies on the tacit knowledge
ther than documentation [7].

SP 1.7 Conduct milestone
reviews

At the same time, Scrum would benefit from the postmortem analysis carried out in
e end of the project described in the PMBo

SP 2.1 Analyze issues

MAN.3.BP14: Act to correct | SP 2.2 Take corrective action

deviations

K. The causes of failed projects should
7.2 List e analyzed, understood and communicated in order to improve the performance of
: List su equent project [13].
5. The sprint

The only unknown practice for the plan-driven methods from Scrum is one of the

SP 2.3 Manage corrective action

tices from sprint retrospective
13 Remove describe how to improve in th

- prioritize major items of success in the last sprint

€ next sprint. According to CMMI, project related
organizational es and impediments are analyzed, corrective action is taken and monitored. Scrum
impediments €sts carrying not only the i
the Scrum

Project finalizing activities from the PMBoK:

mpeding but also the success factors into the next
t to increase a chance to i

Information to formalize project completion is gathered and
disseminated

The project is evaluated after closing

The lessons learned are compiled for future projects

i1 1 nent
Project Directing activities from the project managen
literature:

Directions are given to the project team

Supervise the project team

mprove immediately. Similar practice could be added
Scrum - the plan-driven practices.
Tailoring the Scrum Process
Sl € comparison of practices described in Table] illustrates that Scrum is not
ting the organizational leve] practices. As was stated by Turner and Jain in [17]
Covered by * scope of agile approach and of CMMI differs. C

i 1 ject team :
Motivate the people in the proje . —
Coordinate the interactions between the people in the proj

team

MMI has broad, inclusive and
used approach. Sutherland et al.
nstitutionalization that can help

izational approach while agile has small and foc
found in [19] that CMMI has a concept of i
ablish needed discipline to adopt agile methods

Explain the reasons behind the decision-making to the project
team

organization wide. According to

the focus of the agile paradigm is on project and team while CMMI is

‘mented at organizational level. Therefore Sc

Resolve the conflicts within the project team

rum project management could be

i ing 1 above (Table 1), the wo:o. :
s g Mﬁmmwm“mﬂmhﬂ%ﬁﬂ%ﬂw wmmm:&w&\ of the Eounnmg H._ 1
mont cﬁgww,\% data management, planning for needed HSoéH.mamm_ mMB ma
anning d stakeholder involvement planning, .mﬁ.mw%o_aow EMo N o
Eﬁ.ﬁim i lans that affect the project, Hooono:Em. io_._m an Bmoﬁz.

NMMMJ‘WMWNEMW activities of the PMBoK and project directing ac

project management literature.

i i nknown to Scrum are covel

lan-driven practices that are u ’ | are |
EQKMMWMMMWMWMM of the ScrumMaster (evaluating ﬁwmamwwwﬁ_wwawm
i ledge and skills, resource . ‘
D o e toring, ocmdooﬁ directing) or in the daily Scrum

planning and monitoring,

roved by adding practices that address org
hunication between project and organizational level.

he CMMI specific practices about planning the project resources and for the
ded knowledge and skills are handled in the case-company during the project
aration phase but they are not addressed in Scrum rules and activities or by any
um roles. In addition to that, Scrum could benefit from postmortem reviews
responding to the three unknown practices of Scrum from the PMBoK. Also, the
put work products of project progress review described in process models could
bute to better managerial overview of Scrum project status during project
elopment. All these improvements are pointing towards organizational level

anizational level or enhance the

omparison owﬁmuumalﬂ T T— : —— :
tven and Agile Project Management Approaches .. 485

he release retrospective report corresponds to the PMBoK practice of being gathering

CMMI [9] describes the typical work products of progress and mile
d disseminating information of project completion.

as documented progress or milestone review results. IS 15504 describes the
status record in detailed level saying that it has the following possible
status of actual tasks against planned tasks, status of actual results ag
goals, status of actual resource allocation against planned resources,
cost against budget estimates, status of actual time against planned sc
actual quality against planned quality and record of any deviations
activities and reasons why (15504-5).

In order to enhance the communication between project and organ
the progress status reports could be added to the tailored Scrum process as de

in Figure 2.

Conclusions and Future Work

N our rese i i
e MMmF we compared Eo Ew:-&:.\md project management practices with
E Mmanagement practices and tailored the industry project management
_;Z ess so that it would address the organizational level s
ext, we plan to measure the in i
crease of estimation accurac j
b : y and project
ormance of the tailored process. In order to do that, the tailored process Wzﬂ be

24 hours

- \ lemented in industry for evaluati Th w

, ry uatio p i
%d;m by ject performance and estimation mom%wo omMm. ; o mn_H o oo>:oom_8:a5mco§

_ Daily Scrum i 1 i .

i iy i X 12], the main problem with agile ao<&on50wﬂ wmommwﬂsm wa o._mza =i
o d N Lle de . 1e lack of detailed planning of the
tus namely the effort estimation. Project estimation accuracy should w«_oammmo

Product " £y 24 o
- /| uu =
; the underlying causes for the gaps between the estimated and realized effort for

Backlog weeks Potentially " task h
o) i ask havi i i
S g | mwwhwww ﬁ%..wwmmm%s W_.MM_WM“. etro @mﬁ?.o HMHVome:Ewnmw“wM.m%WMEmoﬂoﬂwm%vwomﬂvm“_aﬁﬂ%amﬂm% oﬁom:%%&ww%
o 4 & 5 ﬁo&u ,.Emmmﬂ _MMM_QWMHMMMMMMM%M.H implementation of the tailored Eommmm and ooﬂwﬂwmwmm
,,_.sae,wu?.wﬁaom u,w:; P MMMH oﬂ“ﬂ%mﬁm Mmﬂ_m%o measured an_mm: both quantitative and qualitative
oo ly are described in [21] - EM wwwwwmwwm_ummwwwﬁ %MMOMWmM%@oMHmMEM%M WEMM_%

1.2 T et S s i n s G o Emﬁwﬁo NMMMMM@ nm_nﬁioﬂoamu ability to achieve customer satisfaction ability to
goals, productivity in the project, and th ’s ability i
gy o, Eroductivi , e product’s ability to satisfy
Y n budget, schedule, proj

: . . . , project and product goals ar

Mm% m_w Mwmoﬁwwwmn ﬁouosw@m:% and M\E be compared to the data prior to WEE@mBmEEM
- Customer satisfaction surveys are carried i j

| : tin each project and

compared to see whether the tailor nor i

. ed process has i

- : the ta ncreased the customer

ction. The project productivity is measured through project velocity that is

HU@Q mn HN W TO_ € HTQ mcreas mv i i w\
m@Q roject (@—CO_ OITeESPO:! (0]

The progress status reports are periodical reports written by either Scru
Product Owner and distributed to the team and management. The pre
report includes the description of the status of tasks, resources, costs, Sck
quality against their estimates.

In addition to the progress status report that has been added to the tailo
process, the project finalizing activities of the PMBoK unknown to S
added to support the increase in project performance in subsequent projects. T
PMBoK practices are: information to formalize project completion is gath
disseminated, the project is evaluated after closing and the lessons I
compiled for future projects. The new practice for the tailored process
release retrospective and will include similar tasks of sprint retrospective, 1
prioritized list of major items of success in the release and how to im

subsequent releases; and create a prioritized list of major items of impediments
release and how to remove them from subsequent release. These tasks co
the PMBoK practices of project evaluation and compiling the lessons learn
release retrospective has an output artifact of release retrospective report Wi
shared among the team, posted in the collaboration tool of the company and
to all ScrumMasters and Product Owners for organizational knowledge i
purpose. The ScrumMaster and the Product Owner of the release
responsibility for the practice to be carried out and artifact delivered. The sh

nowledgments

s research was supported by the Euro i
: pean Regional Devel
e Estonian Center of Excellence in Computer m&m:om mxm\wo pment fund throueh

eferences

Wﬂwwm:%cw,ﬁ. WMMMMMMHWW%M\. E Hr% 2%?.%5: of ISO 9001 to Agile Software Development
; - € Process Improvement 9th International ‘
2008. LNCS, vol. 5089, pp. 371-385. Springer, Heidelberg Awooov.:m Conference, PROFES

Proceedings of the Ninth International Baltic

486

Conference — Baltic DB&IS 2010

2. Abrahamsson P., Warsta J., Siponen M. T., Ronkainen J.: New Directions
Methods: A Comparative Analysis. In: 25th IEEE International Conference o
Engineering, 244p. Portland, Oregon (2003).

3. Dingsgyr T., Dybé T., Abrahamsson P.: A Preliminary Roadmap for Empirical Re:
Agile Software Development. Agile 2008 Conference, 83-94 (2008)

4. Margal, A. S. C.; Freitas, B. C. C.; Soares, F. S. F.; Belchior, A. D.: Mapping

Management Process Areas to SCRUM Practices.

<<<<<<.oommHQm.UH\Enw\Eo\mOWCZxOéH!Hmmm-mn&ow.w& Accessed 09.10

Controlled Chaos, www.controlchaos.com/old-site/ap.htm, Accessed 09.10.2009.

6. Glazer H., Dalton J., Anderson D., Konrad M., Shrum S.: CMMI or Agile:
Embrace Both! CMU/SEI-2008-TN-003, Software Engineering Institute (2008). 4

7 Boehm B. and Turner R.: Balancing Agility and Discipline - A Guide for the
Pearson Education, Boston (2004), 266p.)

8. Hansen B., Rose J., Tjornehoj G.: Prescription, description, reflection: the s
software process improvement field. International J ournal of Information Manag:
24. 457-472 (2004) t

9. CMMI for Development. CMU/SEI-2006-TR-008, ESC-TR-2006-008, Version 1.2, ¢
Product Team, Software Engineering Institute (2006), 537p. 7k

10. ISO/IEC 15504-5. ISO/IEC 15504-5 Information Technology - Process Asse
5: An Exemplar Process Assessment Model, 1st edition, ISO/IEC JTC1/SC7 (2006).

11. Project Management Body of Knowledge: A guide to Project Management E
Knowledge. Project Management Institute, Pennsylvania, 209p (2000)

12.Salo O. and Abrahamsson P.: An Iterative Improvement Process for Agile
Development. Software Process Improvement and Practice, Vol. 12, 81-100 (2006

13. Verner J. M. and Evanco W. M.: In-house Software Development: What Softy
Management Practices Lead to Success. IEEE Software (January/February), 86-93

14. Tolfo C., Wazlawick R. S., Ferreira M. G. G., Forcellini F. A.: Agile
Organizational Culture: Reflections about Cultural Levels. Software Process
and Practice. (2009). http://www?3.interscience. wi
bin/fulltext/122613722/PDESTART, Accessed 20.10.1009. 1

15. Lepmets M.: Evaluation of Basic Project Management Activities - Study in
Industry. Tampere University of Technology, Publication 699, Pori, Finland (200
http://dspace.cc.tut.fi/dpub/bitstream/handle/ 123456789/63/lepmets.pdf 7sequence

16. Scrum Alliance (2009), http://www.scrumalliance.org/, Accessed 12.10.2009.

17. Turner R. and Jain A.: Agile Meets CMMI: Culture Clash or Common Cause?
Universe 2002. In: Wells D. and Williams L. (eds.). LNCS, vol. 2418, pp. 153-165. (2

18. Jérvinen P.: On Research Methods. Juvenes Print, Tampere, Finland (2001), 190p.

19.EC SME 1
http://ec.europa.cu/enterprise/enterprise _policy/sme definition/index en htm >.“,.u : - :
12.10.2009. E mber of significant features i

20. Sutherland J., Jakobsen C. R., Johnson K: Scrum and CMMI Level 5: The Magic Pol elligent version updating [4] WMMO Hﬂo_c&om oﬁoa.m_ y
Code Warriors. Agile Conference. Denver, CO (July 1 gration of the business model in the software [5].
::@S.mmmzﬁ:@zw:a.ooE\mo_dE\mEroam:?moaﬁﬁzgawwmmm.waﬁ Accessed 05 goals as the concept of

21. Goldenson, D. R. and Herbsleb J.: After the Appraisal: A Systematic Survey of P 1. Both concepts aim at

Improvements, lts Benefits, and Factors that Influence Success. Technical al advantages - ability to
optimizing and other advantages.

OH(—C\M H ware m:m:wﬁwﬁ:—m nstitute Au @@ v @mu H‘

ignificantly. The autonomous i
: systems are built i i
perties of a specific system. As a rule. the ation il o o

An Implementation of Self-Testing

Edgars Diebelis, Prof. Dr. Janis Bicevskis

Datorikas me.n.:m DIVI, A Kalnina str. 2-7 Riga, Latvia
Edgars Diebelis@di.lv, ,ﬁmam.wmoa,\mﬁm@&.?

(9,1

\.ﬁa:»nﬁ This paper is devoted to the anal
:on. mechanisms of self-testing,

testing contains two component
mechanism (self-testing mode).
start and they have been used
The built-in self-testing mode
of test results with saved stan

. ysis of advantages and i -
which is one of the mBmmm aorb&%%wmﬂ.:mwm.
s: full set of test cases and built-in testing
: H.Wm test cases have been collected since project
in Ewwmam:obu acceptance and regression testin
QMHmSmww wx,mocaon of test cases and ooEwmawoW
: lard values in different environ i
mwﬂﬂu“wm Awﬂmm_vaMmow described in .mﬁm&a Self-Testing - %Mﬂﬁh%%mmwwm
e .Emmcgnoﬁ S%muaEm.: with the concept of a test point
exible defining of execution points of testing actions. m:WEQ.v

more, the paper describes th i
g . .
R first implementation of self-testing using test

Keywords: Testing, Smart technologies, Self-testing.

: Introduction

self-testing is one of the features of smart technologies [1]. The concept of smart
; a

hnologi i
gIes proposes to equip software with several built-in self-regulating

hani ’ . ;
hanisms, which provide the designed software with self-management features and

ty to react adequately to the ch i
: anges in external envi imi Vi
ngs. The necessity of this feature is driven by Eon.:oE. S Ak

[

it

nomous systems developed by IBM in 20

. : 01 [6, 7, 8
ing software 58.:02 by adding a set of :oc-bmuonos
pt to external situation, self-renewing, self-

lhereas the features of smart technologies p

B s B] rovide a scaffolding, which is filled with

m, thus integrating the implementation

e E. Diebelis dJ. Bi An Im plementation of Self-Testing
489

modules of smart technologies with the modules of a specific system. As shown in [11, 12], self-testing contains two components:

further development of both concepts is highly valuable.
The first results of practical implementation of smart technologies are &
Intelligent version updating software was developed and is used in p
number of Latvian national-scale information systems, the largest of which,
manages budget planning and performance control in more than 400 gove
local government organisations with more than 2000 users [4]. Firstly, ex
environment testing [3] is used in FIBU, where the key problem is the manag
operating systems and software versions for the large number of ter
distributed users. Secondly, external environment testing is employed by the
Latvia in managing operations of many systems developed independently.. T
smart technologies has proved to be effective in both cases [9]. The third |
the use of smart technologies is the integration of a business model and an
[5]. The implementation is based on the concept of Model Driven
(MDA) [10], and it is used in developing and maintaining several QE&H i
systems. The use of smart technologies has been proven to be effective accord
the results obtained in practical use. This study continues the research of
applicability of smart technologies in software testing.

Test cases of system’s criti i i

. ritical functionality t i i
substantial in using the system; R R yhieh, are
Built-in mechanism (software component) for automated software testing

(regression testing) that provides i
automated executing of i
the test results with the standard values. Rl geiing

‘ .HWM hmwﬂwwmyow. OHEME functionality and preparing tests, as a rule. is a part of
analysis and testing process. The implementation of sclfitesti i
at least partial inclusion of testing tools functionality in the desi = Eee
mplementation of self-testing functionality results in ooBm esigned system. The
em with self-testing functionality calls and a library of mwmﬂw@s.::m the .mmmﬁmnom
Certainly, the implementation of self-testing mwmﬁw\amm -testing m.c.:ocoa (.du
ing the development of the system. However, these omm.,.”m@::am.m&:ﬂocm_ efforts
o 3 : . > forts are justified by man
b _W @MWMH%MM in development and in long-term maintenance of a high mzm_:w
.H.HMHHMH .mm%gzﬂwoows M&M.Mom::m is &B.:Q.S test the software at any time in any
Self-testing provides the software with a feature to test itself automatically | chanism of self- ﬁm ma%m ? HMM m%%,\w_ﬂa%a“co: environments. gm.o am<o_o.§.:m the
operation; it is similar to how the computer itself tests its readiness for op duction database: however they om% iy Emm .soﬂ enter the information into
when it is turned on. By turning on the computer self-testing is activated: auton ssible to implement testing mb {5t BF brod :N.o n mem-osd\ mode. Hence, it is
tests are run to check that the required components, like hard disc, RAM, | system use. Of course, it is useful wo o% ¢ JE Il .
video card, sound card etc, are in proper working order. If any of the comj tem modifications to ensure that testab] mplement Ew. set .om .mmmﬁm with recent
damaged or unavailable, thus causing operation failure, the user receives no ered. stable critical functionality in self-testing is
The purpose of self-testing is analogical to turning on the computer: prior to
system, it is tested automatically that the system does not contain errors that b
the use of the system.
The paper is composed as follows: To explain the essence of the self-test
proach, the first section repeats in brief the ideas on the self-testing method : nd
with its modes [11, 12]. Section 2 looks at the approach for determining the st:
database prior to system self-test, and Section 3 deals with the concept of es
and Section 4 describes in brief the technical implementation of self-testing.
As of writing this paper, the first version of the self-testing software has
veloped; it contains a test control block (test execution and test result cont
self-testing software library, which contains the functions included in the sy:
tested. Technology of self-testing could be approbating for different mvvwm
Now the self-testing technology is being approbated for using in securities an
rency accounting system applications in banking. 23

Self-testing software

| ; MMHHM@MMMM momimaom Mw partly integrated in the testable system, which has several
es; one of them is self-testing mode when an) i
of th . automated execution of
ng (process of testing) is available to the i i,
. ser. After testing, the i
it that includes the total numbe exsoutiel suoaal
. 1 of tests executed, test
failed and a detailed failure descripti m Seedog B e
d | escription. The options provided b -testi
are are similar to the functionality of testing support ﬁoom. Y s

Phases of system testing

,Jc&mq to ensure development of high quality software, it is recommendable to

erform testing in three phases in different environments [11]:

Development environment - in this environment the s

errors are corrected and system patches are made:

Test i - thi i i ;

Wu Smuﬁaowgwﬁ this environment 1s used to test error corrections and
provements. In order to replicate situations in the production environment in test

environment, at least, for exa
" mple, once a month producti i
: 100 environment
be renewed from a backup in test environment; shoutd

2 Method of Self-Testing

ystem has been developed,

The main principles of self-testing are:

o Software is delivered together with the test cases used in automated self-te
o Regression testing of full critical functionality before every release of a
o Testing can be repeated in production, without impact on the production da

e
e ——
| R i i -
T T T e e ———— e e e

e m ebelis and J. B An Im ..HaBmEmmo: of Self-Testing
490

491
] _

i ~ base, while the storin
i i d by the system us .
i i ent - this environment is use -

o ?oaaococ environm _mmono_u\ﬂ&E:mmcnommm?:% nmmamm 4 the real database.
mua_B?oﬁBmimmBmﬂouw

development and test environments.

Testing phases are described in detail in the article Self-Testing - New Af
Software Quality Assurance [11].

g is done in the test registration and execution database, not in

* Self-testing mode. In this mode, automated
automatically executing the stored test cases
file. In the development and testing enviro
database. In the production environment, th
- used. In the self-testing mode, the real dat
accessible in the read-only mode

self-testing of the software is done by
- Test input data are read from the test
nments, test cases are executed in one
¢ test storage and execution database is

abase of the production environment is
2.3 Modes of self-testing

{
As shown in [11], the self-testing functionality can be used in the wo:oéﬁm‘ - k

e Test storage mode. In this mode, new test cases are mmmbaMoMn MW_WMBW.
i logs all necessary informa
¢ edited/deleted. The system | : |
Mwa managing actions by recording Eoﬂ into the test %Mmﬂa.wmom _mMMSWMm@
self-testing mode in the production environment, NMH mH _M%M - om
i ted, is used. In \
ases are registered and executed, . 2Pkl
MM&MHHEQE during test storage mode Eo.ﬁ& mmﬁ&mmm is mooommwwpwha
only mode. Tﬂ&ﬁ development, nor testing mbﬁwoﬁBn%ﬁ ”a@.EH Y iy
database, since one database is used for both storing an ww mw__ﬂm&Wﬂw.
results ow system operation are stored in the test storage file.

@ Tiest control block

Comparison of
test files

storage file
(XML)

: . Application to be tested
: t ort bugs — the user can record the failed test case and : .
use this Bo.am M Rm iption of error to the developer. As a rule, test ¢ Application to be tested —_—
together with the descri . : cifice 2
mm cording to the developer’s interpretation of mowﬁmmm specifi . Apples e e storage file

made mom time. the amount and content of test cases increases due to . (XML)
course of time,

evolution.

Application to'be tested

Database

Fig. 2. Self-Testing Mode

 To call system self-test, the user opens the test control block window.

. The user loads the list of the available test files and selects the tests files to be exe-
uted.

The test control block reads information fr
tions specified in the test file are performed.

In the self-testing mode, similarly to the test storage mode, a test file is created.
The test file is created using the same approach as in the test storage mode.

If data storing is performed in the test case, the data are stored in the database. In
the case of production environment, the related data are taken from the real data-

base, while the storing is done in the test registration and execution database, not in
the real database.

After the testing,
created in the sel

om the test file and executes it; the ac-

Fig. 1. Test Storage Mode }

i es th
1. The user registers a test case in the test storage mode. The user us

ication that is used for daily wcmmzomm. purposes. F
2 wmﬂoﬁmwﬂwmﬂ storage mode, the application registers in the test file the a
. ed in the system. o e
3 WMME storing is performed in the application, the data are stored in

the file created in the test storage mode is compared with the file
In the case of production environment, the related data are read from the re

f-testing mode. If the contents of the files match, the test case has

E. Diebelis and

Implementation of Self-Testing 493

492

ware controls actions of the user who registers the test case, making the user to
provide, with initial test cases, a data set with which the user later registers other
test cases;

e Consecutive execution of all tests. When the self-testing functionality is imple-
mented in the system, the database backup is taken. There after, a new backup is
not taken from the database. Every time when system self-testing is performed, the
taken database backup is installed and all the registered tests are performed consec-
utively;

e Priorities of self-testing mode. Priorities can be selected in the self-testing mode. If
Priority 1 is selected, only those tests that are not dependant of the state of the da-
tabase are executed. Self-testing mode with Priority 1 would be used by system us-

demonstrator may rely that the demonstration will be always mcoommm?_mw, ers. If priority 2 is selected, all the stored tests will be executed. This priority will

any inconveniences and errors during the presentation. The %Enﬁﬁ.@%&ﬂ@? - be used by system developers to perform testing, and they will prepare a database

process corresponds with the self-testing process Qu_.m. 2. mmﬁ.ﬂaw.nbm Y Jplk- prior to Homﬂ:m mo.ooﬁ_sm to Eo test requirements; .

difference between the processes is that self-testing 1s performed in a mc ¢ Test execution criteria. Criteria of successful test execution are built in the system.

ble to the user, whereas the demonstration 1s performed step by step in a From the solutions described above, the test execution criteria approach will be

visible to the user. Together with the demonstration, it w.m ﬁo%ﬁﬂw .HMV used in the system self-testing. Key considerations for the use of this approach are
; . i but it is possible tlined in the next Secti
self-testing. This approach is much slower, outline e next Section.
Mw\wwwms a visible m:omﬁ executing the particular action that has been read from

test file.

been successful; if they do not match, the test case has failed. .Fmonuw. ..,,.m
test results is displayed in the user’s test control block, where, M.m Mrmmammn ase
failed, the user can find detailed information about the reasons of the fai Ea.:

e Use mode. In this mode, there are no testing activities — the user simply
main functionality of the system.)
e Demonstration mode. The demonstration mode can be ﬁmoa to dema
system’s functionality. User can perform system mmB.ozmqmsocm, by ﬁma.m.
test cases in test storage files. During demonstration mode, form fie |
automatically filled with test data from the test storage file, thus monﬁ_oum. : ing
functionality of the system. Since test cases are taken from the test storage file.’

3.1 Test execution criteria

To ensure that tests are not dependant of the data set on which the tests are performed,
it is necessary to control the key criteria for successful execution of the test and
without which the execution of the test is impossible. The control is ensured with test
- execution criteria built in the system under test, which during the test check that it is
possible to execute the specified criterion. If the criterion specified in the test point
does perform, the test continues to execute; if not, the test execution is terminated and
is marked as failed. The reason of termination is notified to the user, who can
eliminate the failure and execute the test again. For example: a test case where a
certain amount is debited from the client’s account. In this test, the following
execution criteria could be implemented and controlled:

3 Preparing the Database for Re-testing

The state of database during the test is oEoE for 9@ n.xooczou of test. W _M pe
that the state of database during the executions will &mwa mSB. M_o state du -
test storing. It means that there are cases where the test might, c.,\: out Mam.moFi..
failure due to changes in the state of the database. mow mmeEm. a test %nama :
certain amount is debited from the client’s account 1s Homaﬁoaonw. If t ﬂM ﬁ_wmﬁ_m
formed repeatedly, it is possible that due to owmﬂmom in account w.m Mbmm m MM& ,
will show a failure. Due to constantly owm.sm:._m amg&mmw it is difficu e
consuming to ensure that the stored test is .9888& /SE. the same state o | | | . | B
database as of test registration moment. Solutions for executing re-tests, considerin s The amount specified in the test case i m<m¢m§o.5 2 QSE e -
:wo variability of database, are described below: i B . ot specified i the test 094 i rogistered fn fhe mame of e -

e Creating a backup database. Prior to storing every test, a backup database is pre * The client’s bank account is not closed.

pared, and a backup database is installed prior to executing every test. ..;m ba
is wSMma for as long as the stored tests, which have been Hmm_mﬁoﬂamﬁﬁm_nm &an :
. : . nd

ticular backup, are being employed. This approach requires a lot of time v

resources; . . a
e Generation of reverse tests. For every registered test case the woﬁ.ﬁmnwm mo~ var
automatically generates a reverse test that reverses .ﬁro amﬁm‘omwo to the EEM i
For example: If the user registers a test during which a certain amount 18 v,a.‘ :
from the client’s account, the self-testing software automatically generates a 1

i i lient’s account;

that credits the particular amount to the ¢ oun .
o Registration of reverse tests. The aim of the solution is to manage the regist .
of user tests so that they would contain a full set of events. The self-testing s

Advantages of this approach:

* When the test is being executed, it is not necessary to provide the same state of the
database it was in when registering the test;

¢ The solution is not time-consuming. To execute tests, a database backup need not
be installed;

* It is possible to execute a particular test(s) not executing all the registered tests;
¢ The technical implementation is comparatively simple.

The major drawback of this solution is the extra work to be done to implement the
test execution criteria in the software.

= LT B An Implementation of Self-Testing ., ST 495

Hereinafter the paper deals with the Test Point concept. Test execution crif e Saving the transaction.
the self-testing software are realised as test points, which are in line with the g

approach for realisation of self-testing.

4 Test Point

rom modal window, Selecting the stock

more precise, a test point is a programming language command in the so
prior to execution of which testing action commands are inserted. A test point ensu
that particular actions and field values are saved when storing tests and
software execution outcome is registered when tests are executed Hmwmmgu_. !
using test points, it is possible to repeat the execution of system events. 3

As described in the sections above, the self-testing features are introduced i i
tested system, namely - written by the test points, which can be introduced &

system in at least two ways:

Specifying the

Savi
number of stocks aving the

transaction

e By altering the system software’s source code. When developing the s
developer implements in the software code also test points that register syste
actions.

e The specialist who defines the business process schemes specifies the test points
the business process. In this case, the business processes and the software m
compatible, and extra resources for moving the testing actions to the soff
required. For the time being, the authors do not have knowledge of any instance
application of the approach described above in practice.

Stock Purchase Transaction

Fig. 3. Stock Purchase Transaction Process

éoﬂ_ﬁm Mﬁ@_mﬂoi mm_w..ﬁoma:m in the .mﬁoow purchase transaction process, the system
uld have the following five test points, which various testing actions are written to:

w. MMMH coEH NWQMWN :\WN:%N:\ registers the client selected in it in the test storage file
: pomt rield with value registers in the test sto i ified
B Tk rage file the security specified for

3. Test point Field with value regi i
; / gisters in the test storage file th i iti
specified for the transaction. y " auantiy efsecurities

4. Test point Application event regi i
gisters in the test 5y
on the button Save. storage file the event of clicking

5. Test point SOL query result regi i
gisters in the test storage fil i
database after clicking on the button Save. e e the data saved in the

When initially developing the self-testing software concept, it was planned ¢
velop only test points that ensure the registration of data storage in the datak
data selection from database events. It was important to check whether when ex
ing repeatedly a database command (INSERT, UPDATA, SELECT, procedure
function call etc), the result saved in the database or selected from the datab
matches the data storing or data selecting performed in the first time.

While evolving the self-testing concept, the idea to use the test point appro
register all system events emerged. Thus, test points register not only data sto
database events or data selection from database events but also other appli
events (filling in fields in application form, calling application events etc). S
changes ensure that user interface and business logics are tested as well; also,
approach provided a possibility for users to use the system in the demons
mode. Consequently, with comparatively low investments, the functionality
testing was increased considerably.

To show how test points are used, a stock purchase transaction process is show
the figure below (Fig. 3. Stock Purchase Transaction Process). The registration o
stock purchase transaction consists of the following main steps: i

Classification of test points is outlined in detail below in this Section

When a stock purchase transaction test case is registered, each om the points in th
test storage file registers information that is used to play guow the test ﬁwﬁg mm:M w
purchase transaction test is plaid back, the self-testing software mﬁﬂu.g\ ste w omﬂ
from and executes the actions registered in the test file. When Em actions s omuw m%. :
the test file are executed, a new test file is created. When all the actions ﬂm/\o_ﬂ .
executed, the test files are compared; they should match if the tests have been e
no.mm@_. If the files do not match, the user is able to identify in the testing softw po
plication Eo point (command) in the test file that has been executed 5%0&03 e

Ho.ﬂ points are placed @.% the developers in the system to achieve that the mz.aom:
functionality of the system is covered. Test points are used as follows:

e Specifying the client;
e Selecting the stock;
e Specifying the number of stocks;

1l:1kw\- S e i’ E. Diebelis and J. " An Implementation of Self-Testin

— 496

o Test storage mode. When the user creates a new test, the specified information in
the test file and obtained in testing is registered in the test points implemented in
the system. Various types of information can be registered in test points, e.g. value
of filled-in fields, clicking a command button, selecting a value from a list etc. Pos-
sible types of test points and their use is described further in this Section;

o Self-testing mode. The software automatically executes the events registered in the

test files, replacing the events entered during storage with their selection from the
test file. The test points placed in the system during execution of tests create the
same test file as in the test storage mode. When the testing is finished, the file cre-
ated in the test storage mode is compared with the test file created in the self-
testing mode. If the contents of the files match, the test has been successful; if Eov.
do not match, the testing has failed,

e Demonstration mode. In the demonstration mode, the test files that have been cre-
ated in the test storage mode and successfully executed in the self-testing mode are
used. In the demonstration mode, within a defined time interval or when the user
executes commands from the test file step by step, the functionality of the system
can be demonstrated both to teach new system users and to demonstrate the system

functionality to any potential its buyers.
Self-testing software employs the following testing actions, the use of which is
shown in Table 1:

e Field with value. The action is required to register a field filling-in event;

e Comparable value. This test point is necessary to be able to register and compare
values calculated in the system. The test point can be used when the application
contains a field whose value is calculated considering the values of other mn_amu
values of which are not saved in the database;

e MessageBox. This test point is required to be able to simulate the message box ac-
tion, not actually calling the messages. This is necessary as not all technologies
provide a possibility to press the message button with the help of the system during
test execution;

e Modal window. This test point is required to be able to simulate the modal SEnoﬁ
action, not actually calling the modal windows. This is necessary as not all tech-
nologies provide a possibility to access during test execution, after calling the
modal window, the window from which the modal window is called,;

e SQL query result. This test point registers specific values that can be selected with

an SQL query and that are compared in the test execution mode with the values se-

lected in the test storage and registered in the test file. The SQL query test point

can be used after data have been saved to compare the data saved in the database,
the data saved when registering the test and the data saved when performing the

test repeatedly;

the application, e.g. clicking on the button Save;

e Test execution criterion. This test point controls whether it is possible to execute
the test. By using test execution criteria test points, it is possible to specify the cri-
teria for the execution of the stored test. In the system self-testing mode, the test
execution criteria points check whether the conditions specified in the test points

Application event. This test point is required to register any events performed i 5

wnm E_Mzma If the criterion is not fulfilled, the test has failed and the user can ac-
ess a detailed description of test execution, in which the reason for non-execution

is specified.

Table 1. Types of Testing Actions

Test storage _ Self-testing

_ Demonstration

Field with value

Registering the field Reading the field name and field
name and field value in | value from the test file and writing
the test file. the value in the respective field.

See text execu-
tion mode.

Comparable value

Registering various val-
ues, inter alia values ob-
tained from the calcula-
tion, in the test file.

There are two cases (additional at-
tribute that points to the particular
case):

e Comparing the value calculated
during test execution with the
value registered in the test file
during test storage;

e Using the value registered in the
test file during test storage in test
execution, not recalculating the
value.

Message box
Registering in the test
file the message call
and the action per-
formed by the user.

The message is not shown to the
user. Tests are executed taking into
account the action performed by the
user and registered in the test file.

Using the value
registered in the
test file during
test storage in
test execution,
not recalculating
the value.

In this mode, the
message box is
shown on the
screen.

Modal window

Registering in the test
file the modal window
call and the return
values.

The modal window is not opened
during test execution, and the mo-
dal window values registered in the

storage mode are used from the test
file.

In this mode, the
modal window is
shown on the
screen.

SQL query result

Registering the test re-
sults in the test file.

Test results can be both
a particular field value
and a query result.

Comparing the values obtained in
the result of test execution with the
values registered in the test file
during test storage mode.

Test points are
not used in this
mode.

Application event

events in the test file. the test file and executing them.

Registering application Reading application events @oﬁmoo text execu-

tion mode.

Test execution criterion

The action is not used
in this mode.

Controlling whether it is possible to
execute the tests in the current state
of database.

See text execu-
tion mode.

__E. Diebelis and J. Bit

5 Implementation of Self-Testing

Key components of self-testing software are:

L.

Test control block, which provides the following key functions:

Selecting the test execution mode (execution of all or selected tests); .L_
Selecting the test mode. The user can m@oo&.\ c@o&ﬂ tests should be mxnoﬁ&i]
visible or invisible mode. The visible mode is intended for aansm.Qm‘.:wEu gﬁ..
the user wants, they can follow test execution step by step. The invisible So&
i faster test execution; : -
WMMMMHMM on test execution. If the test fails, the control block will provide the
user with information on reasons for the failure; N
Deleting tests and test files. |

As of writing this paper, the first version of the test control block has been devel-

oped (Fig. 4. Test Control Block). The test control block has been developed with ad-

ditional functionality and improved with user interface.

i Testing Form

Fig. 4. Test Control Block

Library of test actions. The library contains the test action functions described

herein. Testing action function calls are implemented in the ﬁm.mﬁoa m%mﬁ.aB. Test
functions are assigned parameters that characterise the test mo:.on. Testing mﬁﬁ,..
tions, on the basis of the received parameters, make the respective records in the

test file.

. Test file (XML file). Test functions in XML file, using a particular structure,

register the values that characterise the test case. The XML file structure oocmmmﬁ_,
of the following elements and their attributes:

Form. Its attributes are the form name and the test point number, and its aEanB,.
are test points; . .
Action. The element is a set of other elements. It contains all the test points de-
scribed in Section 4; . :
Control. The element contains data on the control used in the test point. The ele-
ment contains the following attributes: test point number, control name, event (e.g.
i 1 type;
change of value) called at the test point, contro : u
Value. Value element. Contains information on the value selected/entered by En
control. In addition, the element can contain the AmEo .amﬁm type G.m.u
xsi:type="xsd:string" — which means that the control value is a string of symbols);
Values. Element values. If the control contains a number of selected values, they
are shown under this element. The element contains the Value element;

S —— ———y —

An Implementation of wa:.m%mmaum | Aoo

* Function. This test point determines whether a function has been called. The ele-
ment contains the Parameters element and the following attributes: test point num-
ber, function name;

® Parameter. Function parameter. Contains information on the value of the parameter
of the called function. In addition, the element can contain the value data type;

e Parameters. The element is a set of function parameters. The element can contain
the Parameter elements;

* ModalFields. The element contains information on the return values of the modal
window. The element contains the Fields element and the test point number
attribute;

e Field. Modal window return value element;

e Query. The element contains the SQL query, which is executed by the system in
the database. Its attribute is the test point number;

e ComparableField. The element contains information on the field that must be
registered when the test is recorded in order to be able, when the test is played
back, to check whether the value matches the value that was registered when the
test was recorded. The element contains the following attributes: test point num-

ber, field name. The element contains the Value element, in which the field value
is specified;

e DialogResult. The element contains information on the return values of the dialog
box. The element contains the following attributes: test point number, dialog result;

e ChildForm. ChildForm matches with the Form element (form child). The element
is required if another form is called from the form.

The system login test example, in which test points are located, is shown in the
figure below (Fig. 5. System Login Test Example).

ISTehnologija v1.2.5.8 (SEBYUSI)

User: Tauma O\l
Password: _ L G

Wark Flace:

Fig. 5. System Login Test Example

The user performs the following actions in login form:

1. Entering the user name.

2. Entering the user password.

3. Clicking on the button Log in.
4. Choosing work place.

5. Clicking on the button Start.

When a system login test case is registered, each of the points in the test storage
file registers information (Fig. 6. Test File Example) that is used to play back the test.

500 E. Diebelis and J. Bicevskis

- <Actions=>
- <Control Id="1" Name="Username" Event="Username_TextChanged"
ControlType="System.Windows.Forms.TextBox">
<Walue xsi:type="xsd:string">edgars </Value>
</Control=
- «Control Id="2" Name="Passwd" Event="Passwd_TextChanged"
ControlType="System.Windows.Forms.TextBox">
<Walue xsi:type="xsd:string">123456</Value>
</Control=
<Control Id="3" Name="btnAuth" Event="btnAuth_Click"
ControlType="System.Windows.Forms.Button" />
- <Query Id="4">
<Query=SELECT d.DVI_NOSAUK,d.DVI_ISN FROM IST_DVId, IST SLDs
WHERE s.DVI_ISN=d.DVI_ISN AND s.DAR_ISN=72 order by 1</Query=
=/ Query>
- <Control Id="5" Name="Workplace"
Event="Workplace_SelectedIndexChanged"
ControlType="System.Windows.Forms.ComboBox">
<Value xsi:type="xsd:int"=20</Value>
</Caontrol>
=Cantrol Id="6" Name="StartWork" Event="StartWork_Click"
ControlType="System.Windows.Forms.Button" />
</Actions>

Fig. 6. Test File Example

In the example (Fig. 5. System Login Test Example) the order in which test is re-
corded (1-2-3-4-5) is not fixed. The user in login form could perform actions in any
order (for example 2-1-3-4-5). The order in which test case will executed will be the
same as the sequence in which the test is recorded.

The test functions library described above can be used in projects developed in the
MS Visual Studio environment. If required, it can be easily supplemented with new
functions.

6 Conclusions

In order to present advantages of self-testing, the self-testing features are integrated in
a large and complex financial system. Although efforts are ongoing, the following
conclusions can be drawn from the experience:

1. Introduction of a self-testing functionality is more useful in incremental
development model, especially gradually developed systems and systems with
long-term maintenance and less useful in the linear development model.

2. Self-testing significantly saves time required for repeated testing (regression) of the
existing functionality. This is critical for large systems, where minor modifications
can cause fatal errors and impact system’s usability.

3. Self-testing requires additional efforts to integrate the functionality of self-testing
into software, to develop critical functionality tests and testing procedures.

An Implementation of Self-Testing 501

4. The introduction of self-testing functionality would lower maintenance costs and
ensure high quality of the system.

5. Self-testing does not replace traditional testing of software; it modifies the testing
process by increasing significantly the role of developer in software testing.

6. Test points make test recording and automatic execution much easier. Test points
ensure that tests can be recorded in a convenient and easy-to-read manner.

7. Test execution criteria test point determines the possibility to execute the test using
the available data set.

8. If test execution criteria test points are used, it is not necessary to maintain the data
set which was used to register the test.

9. If test points are used, the user can, independently from the developer, register and
then repeatedly execute test cases.

10.Test execution criteria test point provides a possibility to execute tests in random
order.

References

1. Bicevska, Z., Bigevskis, J.: Smart Technologies in Software Life Cycle. In: Miinch, J.,
Abrahamsson, P. (eds.) Product-Focused Software Process Improvement. 8th International
Conference, PROFES 2007, Riga, Latvia, July 2-4, 2007, LNCS, vol. 4589, pp. 262-272.
Springer-Verlag, Berlin Heidelberg (2007)

2. Rauhvargers, K., Bicevskis, J.: Environment Testing Enabled Software - a Step Towards
Execution Context Awareness. In: Hele-Mai Haav, Ahto Kalja (eds.) Databases and
Information Systems, Selected Papers from the 8th International Baltic Conference, 10S
Press vol. 187, pp. 169-179 (2009)

3. Rauhvargers, K.: On the Implementation of a Meta-data Driven Self Testing Model. In:
Hruska, T., Madeyski, L., Ochodek, M. (eds.) Software Engineering Techniques in Progress,
Brno, Czech Republic (2008).

4. Bicevska, Z., Bigevskis, J.: Applying of smart technologies in software development:
Automated version updating. In: Scientific Papers University of Latvia, Computer Science
and Information Technologies, vol .733, ISSN 1407-2157, pp. 24-37 (2008)

5. Cerina-Bérzina J.,Bi¢evskis J., Karnitis G.: Information systems development based on
visual Domain Specific Language BiLingva. In: Accepted for publication in the 4th IFIP
TC2 Central and East European Conference on Software Engineering Techniques (CEE-
SET 2009), Krakow, Poland, Oktober 12-14, 2009

6. Ganek, A. G., Corbi, T. A.: The dawning of the autonomic computing era. In: IBM Systems
Journal, vol. 42, no. 1, pp. 5-18 (2003)

7. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. In: 14th
International Workshop on Database and Expert Systems Applications (DEXA 2003), 2003.
Proceedings, pp. 694 - 698 (2003)

8. Lightstone, S.: Foundations of Autonomic Computing Development. In: Proceedings of the
Fourth IEEE international Workshop on Engineering of Autonomic and Autonomous
Systems, pp. 163-171 (2007)

9. Bicevska, Z.: Applying Smart Technologies: Evaluation of Effectiveness. In: Conference
Proceedings of the 2nd International Multi-Conference on Engineering and Technological
Innovation (IMETTI 2009), Orlando, Florida, USA, July 10-13, 2009

10.J. Barzdins, A. Zarins, K. Cerans, M. Grasmanis, A. Kalnins, E. Rencis, L.Lace, R. Liepins,
A. Sprogis, A.Zarins.: Domain Specific languages for Business Process Managment: a Case
Study Proceedings of DSM’09 Workshop of OOPSLA 2009, Orlando, USA

and Information Systems (ADBIS 2009), pp. 62-77. Riga, Latvia, September 7-1

12.Bicevska, Z., Bicevskis, J.: Applying Self-Testing: Advantages and Limitations.
Mai Haav, Ahto Kalja (eds.) Databases and Information Systems, Selected Paper:
8th International Baltic Conference, I0S Press vol. 187, pp. 192-202 (2009)

